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PREFACE

The Sixth Copper Mountain Conference on Multigrid Methods was held on
April 4--9, 1993 at Copper Mountain Colorado and was cosponsored by NASA,
the Air Force Office of Scientific Research, the Department of Energy, and the
National Science Foundation. The University of Colorado at Denver, Front Range
Scientific Computations, Inc., and the Society for Industrial and Applied
Mathematics provided organizational support for the conference.

This document is a collection of many of the papers that were presented at
the conference and thus represents the conference proceedings. NASA Langley
graciously provided printing of this book so that all of the papers could be
presented in a single fornm. Each paper was reviewed by a member of the
conference organizing committee under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from
these proceedings. The vibrancy in this field is amply expressed in these
important papers, and the collection clearly shows its rapid trend to further
diversity and depth.

N. Duane Melson
NASA Langley Research Center

Steve F. McCormick and
Tom A. Manteuffel
University of Colorado at Denver

The use of trademarks or manufacturer’s names in this publication does not
constitute endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.
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A MULTIGRID SOLVER FOR THE SEMICONDUCTOR EQUATIONS

Bernhard Bachmann
Institut fir Angewandte Mathematik der Universitat Ziirich,
Réamistr.74, 8001 Ziirich, Switzerland
and
Asea Brown Boveri, Corporate Research,
5405 Baden-Dattwil, Switzerland.

SUMMARY

We present a multigrid solver for the exponential fitting method, applied to the current con-
tinuity equations of semiconductor device simulation in two dimensions. The exponential fitting
method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas
triangular element. This discretization method yields a good approximation of front layers and
guarantees current conservation. The corresponding stiffness matrix is an M-matrix. ” Standard”
multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by
an unsymmetric part, which is due to the presence of strong convection in part of the domain.
To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods
and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can con-
struct nonstandard prolongation and restriction operators using easily computable weighted L%
projections based on suitable quadrature rules and the upwind effects of the discretization. The
resulting multigrid algorithm shows very good results, even for real-world problems and for lo-
cally refined grids.

1. INTRODUCTION

The exponential fitting method applied to the current continuity equations is based on a
mixed finite element discretization using the lowest-order Raviart-Thomas triangular element
[1). This discretization yields a good approximation of front layers and guarantees current con-
servation. The corresponding scheme results in a large sparse system of equations, which is dom-
inated by an unsymmetric part. When applying multigrid algorithms to the resulting system (7,
the most difficult part is the construction of suitable prolongation and restriction operators. Us-
ing the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-
Raviart finite element discretization, we overcome this difficulty.

In § 2 we give some results from [2] concerning the mixed finite element discretization. We
determine the resulting system and show the interrelation with a nonconforming finite element
method. §3 deals with the solution of the system of linear equations by our multigrid solver.
First we construct easily computable L2 —projections, based on suitable quadrature rules and
the upwind effect of the discretization. Due to the presence of strong convection in part of the
domain it is also necessary to consider special smoothers for the multigrid algorithm. We use a
minimal residual method with ILU preconditioning. The results of the numerical tests are given
in §4.
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2. THE EXPONENTIAL FITTING METHOD FOR CURRENT CONTINUITY EQUATIONS

2.1. Mixed Finite Element Method

Let @ C R? be a connected, bounded and polygonal domain. H™(Q2), for m € N, and
L%() := H°() denote the usual Sobolev and Lebesque spaces equipped with the norm

lull = { 3 [ 107},

la|]<m

For f € L%(Q) and g € L?(I'y), To C 89 closed with positive length, we consider the current

continuity equation, as given in [3]:

Find v € HY(Q) such that

div (grad u + u grad ) = f in 0 c R?,

u=g¢g on g C N, (1)
Ju oy .

The current is defined by J = grad u + u grad . Here, v € H 1 (2) is a given bounded function.

To discretize problem (1) we introduce the classical method of changing variables from u to the

socalled Slotboom variable p [3]
p=¢¥u

This results in the following symmetric form of problem (1):
Find p € H'(Q) such that

div (e ¥grad p) = f in Q c R?,
3p =x:=¢eYg onlyCanN, (2)
a—zzo onTy=00\To.

Let {7k }x>0 be a regular sequence of decompositions of €} into triangles. Denote by hi the
longest side of all triangles T € 7. The set of edges of 7y is denoted by &, where Sk are the
boundary edges and £2 = & \c‘,',c are all interelement boundaries. Denote by m, the midpoint of
an edge e of £x. Moreover, let P,,, m > 0, be the space of all polynomials of degree not greater
than 7. Following [1], we use the lowest order Raviart-Thomas rmxed ﬁmte element to dlscretlze

(2). Therefore we define the following set of ‘polynomial vectors™ T © CUTIRE AT
RT(T) :={r=(n,n): n=a+fz,n=7+Py, o, B, y€ER}, VI €T,

and set

Vi :={r € (L*(Q))? : div T € L*(Q), tTn =0o0on Ty, 7|r € RT(T) VT € Ti},
Wi = {cp € L’(Q) olr € Po(T) VT € Ti}




Then the mixed finite element discretization of (2) is defined as:

Find (Jx, px) € Vi x Wy such that for all (1, pi) € Vi x Wy

/ e¥Jyndz + / pidiv nedz = / ~ x7xnds,
(9] Q

i (3)
/cpkdiv Judz = | fordz.
Q Q
The matrix associated with (3) is not coercive. To avoid this inconvenience we introduce a La-
grange multiplier. We define
Vi := {1 € (L*())? : 7|7 € RT(T) VT € T},
and for ¢ € L%(Ty)
Arg:={p:ue€ L*(&), ple € Poe) Ve € &, /(u —&)ds = 0 Ve C Tp}.
[
Instead of (3) we now consider the mixed equilibrium discretization,
Find (jk,ﬁk, k) € Vi x Wi x Ak, such that for all (1x, ¢k, tx) € Vi x Wi X Ak
( -
/ e Tindz + Y / prdiv nedz — Y / Menends= 0,
Q TeT T TeT, T
4 Z / prdiv Jydr = / ferdz, (4)
TeT: T N
Z / ukjknds = 0.
| Ter, JOT

As shown in [3], problem (4) has a unique solution and Jx = Jx, px = pr holds. Moreover,
Ak is a good approximation of the solution of (2) at the interelement boundaries [2]. It is pos-
sible to eliminate the unknowns, corresponding to Ji and ji in the resulting system, by static
condensation [3]. This yields a matrix (acting only on the interelement multiplier Ax), which is a
symmetric positive definite matrix and which is an M-matrix if the triangulation is of the weakly
acute type (i.e. no angle > 7).



2.2. The Nonconforming Finite Element Formulation

To introduce the nonconforming finite element formulation we need the following definitions:
Let T19 be the L2—projection from L?(&x) onto

Ag == {px € L*(&) : pile € Po(e) Ve € &}
and P? be the L2—projection from L?(f2) onto

Sy = {vr € L) : vk|r € Po(T) VT € Ti},

ie. H2(§)|e=-1—/§ds, Veec & and PP(u)lr = —I—/Udz, VT € Tx.
[el ] ITI T

The Crouzeix-Raviart finite element space [4] is defined by

: S;i; {v}cg L? Q) : ve|lr € A(T) VT € Tx, vx is continuous at midpoints of edges}. -
For ¢ € L?(Ty) we define

Sk, := {vx € Sk : vp(me) = TR (€)le, € C To}.

Notice that the standard basis functions of Sk are equal to one at the midpoint of exactly

“one edge and vanish at the midpoints of all other edges. Using the arguments concerning static '
condensation in [5], it is straightforward to prove the following lemma.

Lemma 2.1.

The solution A, of (4) can be written as Ax = I (wy), where wy is the solution of the follow-
ing nonconforming weak problem :

Find wi € Sk such that for all vk € Sk

Pl(e¥))™? d d > R

> ) fred v rad vt = 5 229 / 2Po(ed,)) Wz (5)
o

Rernark22

[
N
I o—

For wy as in Lemma 2.1. and the solution p of (2) the following error estimate [2] holds:

llo = wkllo < k&l *(llplls + [13112)

with v = v(e¥) independent of p and hy.




The Lagrange multiplier A is an approximation of p = €¥ u. In semiconductor simulations
the range of 1 is very large, so that )\ is not suited for actual computations. Moreover we are
interested in approximating the solution u of (1). Hence we introduce the following change of
variable

Ui = (H%(e‘/’))“l A € Ak’(ng(eiﬁ))—lx- (6)

Denote the standard basis of Sy by ., e € £. We define the linear operator Ey : S — Sy by
Ei(pe) = Y(e¥)|epe Ve € &.

For f € L*(), Gi(f) € L*(9) is defined by

3 1 e¥
Ge(f) = P2(H)(= — =—=———=).
Finally we arrive at the following statement:

Lemma 2.3.

Let ¢ = (I}(e¥))~'x € L%*(To). Then pi of (6) can be written as px = 9 (ux), where uy, is
the solution of the nonconforming weak problem:

Find uy € Sy ¢ such that for all vy, € Sk,0

Z (P,?(e'/’))_I/ grad Ey(ux) grad vidr = / Gr(f) vidz. )
TeTx T Q
o
Remark 2.4.
Note that problem (7) is the usual nonconforming Crouzeix-Raviart discretization of the
Laplace equation, if 1 and f are constant on .
o

We can use the error estimate of Remark 2.2. to obtain an estimate for the approximation
error between the solution u; from (7) and the solution u of (1), though the result is rather un-
satisfying. To arrive at an improved error bound, one could use the fact that two Babuska-
Brezzi conditions hold [6] for the corresponding bilinear form. The stability and the unique solv-
ability of the discrete problem (7) also follow. In the following we construct a, multigrid algo-
rithm for problem (7). Therefore we define the bilinear form a; on Sk by

ar(ug, vi) == Z (P,?(e'b))_l/ grad Ey(ux) grad vy, dz.
TeTk T



3 Tl

3. MULTIGRID METHOD

3.1. Adaptive Mesh-Refinement Techniques

In order to formulate the multigrid algorithm, we need a regular sequence of triangulations
{7k }x>0. In our refinement process, two objectives are pursued. First, in order to improve ap-
proximation, we should refine the grid locally, where the solution behaves very badly. Second, we
have to construct weakly acute triangulations to guarantee that the corresponding discretization
matrix is an M-matrix. Therefore we define the strategy and rules below. Given a triangulation

we refine its triangles as follows:

(1) The refinement process is started by a suitable error estimator, e.g. based on residuals,
which marks some of the triangles as red.

(2) If a triangle is marked
(i) red, it will be cut into four new ones by joining the midpoints of its edges,

(ii) green, it will be cut into two new triangles by joining the midpoint of the longest edge
to the vertex opposite to this edge, and

(iil) blue, it will be cut into three new triangles by joining the midpoint of its longest edge to
the vertex opposite to this edge and to the midpoint of one of the remaining edges (see
Fig.1)

Figure 1. Red, green and blue refinement of a triangle.

(3) Hanging nodes are avoided using the following rules:
(i) a triangle with three hanging nodes is marked red

(ii) a triangle with two hanging nodes is marked blue, if one of the nodes lies on the longest
edge of the triangle; otherwise it is marked red

(iii) a triangle with one hanging node is marked green, if the node lies on the Jongest edge of
the triangle; otherwise it is marked blue

Note that rules (ii) and (iii) may introduce new hanging nodes. However, one can prove that
the refinement process obeying the above rules is finite. Moreover, assuming that To has only

isosceles right-angled triangles, then it is guaranteed that all triangulations T, are weakly acute.

6



3.2. The Prolongation

In order to solve problem (1), we have to find the solution uy of the discrete problem (7).
Since the Crouzeix-Raviart element is nonconforming and Si_; ¢ Sk, we must construct a suit-
able transfer operator between Sx_; and Si. In addition, the discretization shows upwind effects
due to the existence of strong convection in part of the domain. This also must be taken into ac-
count.

In [7, 8] a hierarchical basis multigrid method was used to solve a linear system arising from
the convection diffusion equation by an upwind discretization. It was shown that the convergence
of the hierarchical basis multigrid method depends on the strength of the convection term. When
solving the discrete problem (7) with the multigrid algorithm [9], a similar effect can be seen in
the numerical experiments. On the other hand, considering the one dimensional problem, one
sees that a good interpolation has to regard the upwind effect. Therefore we introduce the fol-
lowing weighted L?—projection. Define

(u,v)g := Z (PR(e?)| )t Z / Ex(u) vdr Vu € Sk, v € SiUSikyr. (8)
TeT: T€Tks1
TCT

For all u € P»(T), T € Ty, the quadrature rule
T
/ud:z: = % Z u(m,)
T eCOT
is exact, so that (8) can be written as
0/ ¥y \~1 1T
(woe= D (B 3 Y E(u)(me) v(m.) (9)

TeT T€Th 41 eCdT
TCT

for all u € Sk and v € S U Sk41-

Remark 3.1.
Note that if v € S holds, (9) reduces to the equation

iy
@k = 3 (P EL 3 (e, ume) o(me).
TeT; eC8T
Moreover, if 1 is constant, we have
(u,v)k = (u,v) Vu€ Sk, veESkUSky,

where (u,v) := fn uv dz denotes the usual L?2—inner product.



WK

Ife€ &) then

From (9) it follows that the standard basis functions of Sk are mutually orthogonal with re-
spect to the inner product (.,.)x. Therefore we can obtain an easily computable prolongation op-
erator PF_; : Sk_1 — Sk by

(Plf—luk—h Uk)k = (uk—ly Uk)k—l YV ug—1 € Sk—1, Uk € Sk.

It is straightforward to prove the following lemma:

Lemma 3.2.

Let ug_1 € Sk—1, then:

R (e¥)le ) (Er—1uk-1)(me) |7
o , RN B )
where T (resp. T) is the triangle in 7i (resp. Tx—1) withe C OT (resp. e C OT).

If e € £2 then (P,l:_luk—l)(me) = (

ng(e¢)le + !TR| H2(6¢)|e )—1
PY(e¥)lre P(e¥)lrr
(7" (Br-1uk-1)(me)lge TR (Br-1ux—1)(me)| 7z ),
Py (e¥)l 52 PY_y(e¥)l7n
where TL, TR (resp. TL,TR) are the two triangles in Ty (resp. Ti—1) with TENTR
= e and TE ¢ TE, TR c TE. (see Fig.2)

(PE_jug_1)(me) = (IT|

Remark 3.3.

If 4 of Lemma 3.2 is constant, we have the usual L2—projection If_; as given in [9]. The
Hg (e"’)le
P(e¥)lr
hence the interpolation is not very expensive. On the other hand, as shown in [5] the coefficients
IR (e%)le ] '
P(e¥)|r
node is equal to zero.

coeflicients , k > 0, are also computed during the construction of the stiffness matrix,

, k > 0, introduce an upwind effect; i.e. the coeflicient corresponding to the downwind



\\ TR

Figure 2. Interpolation.

3.3. The Smoother

A suitable smoother for the system (7) is given in [10] by a Gauss-Seidel-iteration with de-
coupling. This smoother is confined to special triangulations and does not allow adaptive grid
refinements. Another candidate for problems with strong convection terms is the ILU-iteration.
Here we restrict ourselves to a variant of the ILU-iteration. The ILU-decomposition of the linear
system Ay, related to problem (7) and the standard basis of the Crouzeix-Raviart finite element
space Sk ¢, can be written as

Ax = LUy — Dy,

where Ly, Ui and Dy are given by the sparsity pattern of Ax. Denote by ax = (ae)eece, the coeffi-
cient vector of ux = 3 £, Ce¥e € Sk and by bx the right hand side. Then the ILU-iteration is
given by:

af an arbitrary starting vector, w € (0,1],
of = ok +w(LpUs) M br — Akel!), Vi=1,---.

In order to get a good smoothing rate, we must optimize the factor

| Ak (o — @)l
Ak (e — i)l

as mentioned in [11]. Here o} is the solution of Agai = bg. Therefore, by computing the optimal
damping parameter w in every step, our final smoothing algorithm is



Algorithm 3.4.

o) an arbitrary starting vector, ry = b — Arad,
fori=1,-.-,compute:
i—1 -1_i-1
dy = (LeUs) ",
i-1 _ i—1
Vg - Akd‘;c ’
i—17 i-1
i-1_ Y% T
W =T
,vz—l vt—l
k k
a;c —_ a;c—l +w1—1dj;c—l,
rp =1y ' —wT T

end.

Remark 3.5.
~ Algorithm 3.4. can be interpreted as a minimal residual method with ILU-preconditioning.

T 3.4. Multigrid Algorithm

Now we are in the position to formulate our multigrid algorithm.

Algorithm 3.6. (One MG-iteration at level k)

(1) Pre-smoothing: Given ud = Y . £ alp. € Skc¢. Fori = 1,.-+,11 compute u}, using Algo-
rithm 3.4.

(2) Coarse-Grid Correction: Denote by u;_; € Sk—1,0 the solution of the coarse grid problem

ak—1(uk—1,%-1) = (Gk(f), If_1vk—1) — a(up?, If_1vk—1) Vwe_1 € Sk_10. (*)

Ifk = 1,set dg—1 = up_y. Ifk > 1, compui:é;:éﬁ approximation dix_; to u;_; by applying
p = 1or u = 2 iterations of the algorithm at level kK — 1 to problem (*) and starting value 0.
Set

vi+l . V1 k -
’U',kl «.— ukl + Pk__luk_l.

(3) Post-smoothing: Apply v, iterations of Algorithm 3.4. to u',’C‘H.

10
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Remark 3.7.

So far, there exists no convergence proof for Algorithm 3.6. The standard convergence analy-
sis, as in [9, 11], cannot be used here, because the bilinear form ag(.,.) is unsymmetric.

4. NUMERICAL RESULTS

In this section we present three numerical examples which demonstrate the behaviour of the
proposed multigrid method. In all experiments we measure the performance of a method by the
arithmetic mean of the convergence rates

iT i
i Tk Tk
p‘l— OT 07
T Tk

where 7 is the defect of the i—th iteration.

The first model problem is taken from the papers of Brezzi, Marini and Pietra [3, 5]. We
consider the domain  := (0,1) x (0,1) with Neumann boundary

I :={(z,9): (x=1)A(y<0.75)) V ((y = 1) A (z < 0.75))}

Il

and Dirichlet boundary I’y := 902\ I', right hand side f = 0 and potential v defined as ¥(z,y) :
"I)O (iII 1 y)

l with
0.0 if 00<r<08
Yo(r,y) = r—08 if 08<r<09 withr:=+/(z-1)2+(y—1)2.
0.1 if 09<r

On Iy we have g(z,y) = 0if z = O or y = 0 and g(z,y) = 1 otherwise. We use the initial
triangulation 7 as given in Fig.3. and refine every triangulation by marking all triangles as red
(uniform refinement). The numerical solution for I = 10® and a locally refined grid is shown in
Fig.4.

Figure 3. Initial triangulation 1. Figure 4. Numerical Solution.

11



1N

We test our multigrid algorithm 3.6. with two pre- and two post-smoothing steps (11 = 12 =

2) and with different values of 1 (only smoothing : p = 0; V-cycle: p = 1; W-cycle : p = 2)
for problems with varying kmax {(kmax = 1,---,5). The corresponding convergence rates forl =
10 and [ = 108 are given in Tab.1 and Tab.2 respectively. In all experiments we used the same

arbitrary starting vector.

Fmax 1 2 3 4 5
p=20 672 .854 .886 904 910
pu=1 | 032 | .103 | .159 | 208 | .253
w=2 .032 074 .059 .059 055
Table 1. Convergence rates (I = 10)

Komasx 1 2 3 4 5

pu=20 .736 .879 .890 .906 910
p=1 .096 .245 .358 427 482
u=2 .096 221 .266 235 201

Table 2. Convergence rates (I = 10°)

In Tab.3 we show the results for kmax =5 and with varying p and { = 10™.

m 0 1 2 3 4 5
p=0 | 907 | 910 | 908 | .906 | .908 | .910 | .908
p=1 | 227 | 253 | 444 | 473 | 483 | 482 | .482
p=2 | 053 | 055 | 075 | .174 | .198 | .201 | .201

Table 3. Convergence rates (kmax = 5)

In the second experiment we take

with ¥(z,y) = 10% (1 + tanh(100 (r — 0.65))) and r = /(z —1)2 + (y — 1)®. Again we chose
Q2 = (0,1) x (0,1). The Dirichlet boundary 'y, = 99 and g(z,y) =

solution is given by - —-

The numerical solution is shown in Fig.7. We Vu,sreﬁd, three different coa;rrse;ggizdsi, as given in

f=-210°

e“/"(zvy)

(cosh(100 {r — 0.65)))2’

u(z,y) = (z +y) e V&Y.

(z + y) e~ ¥@¥). The exact

Fig.3, Fig.5 and Fig.6, to show that the Algorithm 3.6. does not depend on the orientation of the
grid. For uniform refinement and kmax = 5 Tab.4 shows the results with varying p (0 =0,1,2).

In Tab.4 we also show the results for kmax = 6 and adaptive refinement of the grid (see Fig.8).

12
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Figure 5. Initial triangulation 2.

Figure 7. Numerical solution.

Figure 6. Initial triangulation 3.

Figure 8. Adaptive refined grid (k = 4).

grid init. triang. 1 init. triang. 2 init. triang. 3 loc. ref.
p=0 .900 .903 891 .905
p=1 311 225 216 409
=2 157 .087 128 .355

Finally we consider an experiment with a real-world problem. Fig.9 shows the schematic
structure of the doping of a thyristor. With an existing simulation program (ABBPISCES) we
computed the solution u of (1) and the potential 9 of the coupled stationary semiconductor
equations for a blocking-state (see Fig.11 resp. Fig.12) and an on-state of the thyristor (see

Table 4. Convergence rates

Fig.13 resp. Fig.14). The so computed potential 1) was substituted into equation (1) and the re-

sulting system was solved with our multigrid algorithm. Fig.10 shows the grid for an adaptive

refinement (k = 5). Finally Tab.5 shows the convergence rates for Algorithm 3.6. with a suitable
number of pre- and post-smoothing steps, with varying u (u =0, 1,2) and kmax = 7.

Figure 9. Schematic structure of the doping.

85K

Figure 10. Adaptive grid (k = 5).

L \
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Figure 13. Solution (log).

Figure 12. Potential.

Figure 14. Potential.

state blocking on
p=0 843 828
p=1 (1 =1 =22) .249 112
p=2(=10=9) 108 121

Table 5. Convergence rates
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Abstract

Grid staggering is a well known remedy for the problem of velocity/
pressure coupling in incompressible flow calculations. Numerous incon-
veniences occur, however, when staggered grids are implemented, partic-
ularly when a general-purpose code, capable of handling irregular three-
dimensional domains, is sought. In several non-staggered grid numerical
procedures proposed in the literature, the velocity/pressure coupling is
achieved by either pressure or velocity (momentum) averaging. This ap-
proach is not convenient for simultaneous (block) solvers that are preferred
when using multigrid methods. A new method is introduced in this pa-
per that is based upon non-staggered grid formulation with a set of virtual
cell face velocities used for pressure/velocity coupling. Instead of pressure
or velocity averaging, a momentum balance at the cell face is used as a
link between the momentum and mass balance constraints. The numeri-
cal stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D) both during
the smoothing and inter-grid transfer, which is a convenient feature when
a block point solver is applied. The results for a lid-driven cavity and a
cube in a lid-driven cavity are presented and compared to staggered grid
calculations using the same multigrid algorithm. The method is shown to
be stable and produce a smooth (wiggle-free) pressure field.

1Ph.D. Student
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1 Introduction

Multigrid methods are used in a number of applications in fluid dynamics,
usually by applying the Full Approximation Scheme [1]. Incompressible flow
calculations usually employ a staggered grid because of its strong coupling
between the pressure and the velocity field (e.g. [2]. For complex geometries,

however, as well as for calculations in non-orthogonal coordinates, the use
of a staggered gnd is a serious obstacle to efﬁment and ~well structured

computer coding [3]. Additional coinplex1t1es arise when a block-solver is
used; for example, vanables cannot be easily grouped into cell-bound blocks
due to different node count. Some authors resort to asymmetric nodal
clusters [5) while others update a symmetric block of variables around the
cell centre node thereby updating face velocities twice in each relaxation
sweep [5, 6]. Various levels of decoupled relaxation are also common. These
include distributive relaxation, where all momentum equations are solved
together and the pressure field is solved separately [1, 7], and sequential
schemes that update variables throughout the flow field one by one 8, 9].

Some comparative studies of block versus sequentlal relaxation give no clear -

preference [10, 11]. There is a greater consensus that grid staggering is a

necessary burden, particularly in the context of multigrid methods (12, 13, -

14, 15, 16] and even [1]). Comparison studies of staggered and non-staggered
methods are sometimes conflicting in their assessment of the accuracy and
stability of any given method. While some authors demonstrate that non-
staggered methods match the staggered ones using both criteria ([13, 16,
17]), others question it ([18]). Despite this, the majority of finite volume
incompressible calculations use staggered grids. The main reason may be
that existing non-staggered grids increase rather than lessen the complexity
of the staggered grid calculations. For example the method of Rhie and
Chow [19] (adopted by [13, 14, 15]) requires that both the nodal and
cell face velocities are stored. Moreover, in a multigrid context, both the

nodal and the face velocities need to be restricted [8], requiring even more -

computational work. Also, the computational cluster extends beyond either -

9 or 27 point stencil in two- or three-dimensional formulations respectively
for the first order discretisation and even more if the higher order methods
are used.

The considerations mentioned above motivated the present contribution
for a method suitable for block solvers on an irregular three-dimensional
domain using a non-staggered grid.

:



In this paper a brief description of the multigrid procedure based on
a new non-staggered method is given in section 2 and the multigrid
implementation in section 3; the test cases and results are presented in
section 4, followed by the discussion section where relative merits of the
method are assessed.

2 The new non-staggered method

A transport equation for a general set of transported variables u in the
volume {2 bounded by a boundary S can be expressed in an integral form
suitable for finite volume formulation

) d
= pud§d + fﬂ [puui ~ Ty ( a;l,)] n;dS = Fy, (1)

where p is the density, u; is the velocity component in the z; direction and
n; is the component of unit normal to the boundary S. When (1) is applied
to the momentum balance of a viscous incompressible fluid, the set u is a
velocity vector u = {u;,j = 1,...,d} (d being the problem dimension), with
the corresponding diffusion coefficient I' = p and the source terms

()0 () S

in the absence of external volume forces. The extension to other trans-
portable properties (such as enthalpy, mass fraction, etc.) is straightforward
by augmenting the vector u to include new variables and defining appropri-
ate source terms and the diffusion coefficients. In the following presentation
a three-dimensional implementation will be used.

The momentum equations are discretised using the hybrid (central/up-
wind) dlfference scheme [20] although higher order schemes can be
employed!. The pressure field is resolved by means of mass conservation for
the control volume around the node in a symmetric block manner as used
by Vanka [5] for the staggered grid, although the extension to the line block
around the node in a symmetric block manner as used by Vanka [5] for
the staggered grid, although the extension to the line block formulation is

1For a multigrid implementation of a second orde1 upwind scheme on a staggered grid
see e.g. [21].
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straightforward. The estimation of the face velocities that are substituted
into the mass conservation equation is obtained by discretizing the mo-
mentum equation over a half-length volume around each cell face, directly
involving the nodal pressure and velocities, while the lateral velocities are
obtained by averaging values from the nearby nodes (see Fig. 1). More
details on the coefficient generation are given in [22]. -

The principle of discretizing the face velocity using a half-size cell is
applied also by Schneider and Raw [3], although in their method the
coefficients of the face velocity are treated implicitly by incorporating them
into the nodal velocity coefficient matrix. To ensure gg)?sitivg,,deﬁnitenessiof'
the nodal velocities coefficient matrix, Schneider and Raw had to truncate
the momentum equation applied to the face velocities (3, 16]. In the
present method, the face velocities are explicitly expressed in terms of
the surrounding nodal values and used in the continuity equation for
the pressure correction calculation. The implication of this step is that
the family of face velocities satisfies both the momentum and the mass
conservation exactly at the positions where the convection velocities in
a general transport equation are required. On the other hand, as an
average of the (tentative) nodal velocities they are readily available without
requirement for a permanent storage.

The boundaries of the flow field are coincident with the cell faces,
enabling the definition of a set of boundary nodes there. This practice
ensures consistency between the global mass balance of the whole calculation
domain and the local mass balance of each cell, but calls for special
treatment if Neumann boundary conditions are to be used. If the zero-
gradient condition for the normal velocity is discretised in a usual way

A(uini) _ (wini)p — (Winti)inn
a(zing)  (mima)p — (Tini)inn’ 3)

where subscripts b and inn denote boundary and the first inner node,
respectively, the flow rate through the boundary will be linked to the
velocity that does not belong to the mass preserving field, resulting in
poor overall mass conservation. The correct way to implement Neumann
boundary condition in this case is to use the face velocity. This way, the
local and global mass balance become fully compatible. There is no need
for any special treatment of the Dirichlet boundary conditions where the
face velocities coincide with the boundary and are assumed known.




3 The multi-grid implementation
In the multigrid context, the nonlinear equation (1) can be expressed as
L(u)=F (4)

by grouping all terms that will result in a coefficient matrix (within a
Newton iteration cycle) into the operator £ and the remainder into the
source term F as in [13, 23]. A more common practice of expressing Eqn. (4)
as homogeneous (by absorbing F into £(u)) [1, 24] is found by the present
authors to be somewhat confusing, especially when defining residual transfer
to the coarse grid.

The discretised (sparse, positive definite) Eqn. 4 for the grid [ is linearised
by a Newton iteration [24]

Ll = F (5)

and relaxed by a block Gauss-Seidel method.

The updates of the variable set

v’ = a(diag(L)) "R/ (6)

are expressed in terms of the residual R!=F! - Llul, the inverse of the
coefficient matrix diagonal (diag(L))~! and the underrelaxation coefficient
o Variables at the node i, j, k are then updated by u; ;5 = w; ; x +u'; j &-

Restriction is accomplished by grouping a cluster of eight cefls into one.
This leads to the following operator

1
1 IK = §(¢z‘,j,k + @itk + i j+1k + i1t
Git1,5+1,k + Bijr1k+1 + Pit1 k1 + Git1jr1h+1)s  (7)

where I = 2i — 2,... The same operator is applied both to variable and
residual restriction. After both the variables and residuals are transferred
to the next coarser grid (I — 1), Eqn. (5) is approximated as

[l =F, 8)

where 1
F o =F-1—F - L5 el ) + RIFIR (9)

21



22

is the equivalent source term on the coarse g‘l:ld The I'eStIICtIOD at'

Neumann boundaries is carried out using a divided form of the boundary
conditions [1]. For the velocity component perpendicular to the boundary,
an additional correction is made to preserve the mass flow rate through the
boundary.

Prolongation is carried out by tri-linear interpolation using a seven point
stencil, shown here for one cell and with injection only:

$ijk = gBOr 0K + b1-1,0K +¢1,0-1,K + ér,.7K-1) (10)

with i = (I + 2)/2,... The injection upon the first visit to the fine grid
(FMG cycling is assumed) and the fine grid correction are done as

! ! I I
ug . = P{_ W1 OT Upey = Ugg + Pj_j(w_1 —ug;_1). (11)

4 Test cases

The non-staggered method presented in this paper is compared with
the staggered three-dimensional calculations employing the block symmetric
Gauss-Seidel algorithm of Vanka [5]. For both methods the coding and data
structures are of the same style. ,

The flow in a three-dimensional cavity mth a movmg top is used as a
first test case. The residual norm history is shown in Fig. 2. The rate of
convergence obtained when calculating on a staggered grid is comparable
with the results of Vanka [10] where 12 work units (w.u.) were necessary for
a two orders of magnitude residual reduction. In our calculations 14 w.u.
was necessary for the staggered grid calculation and 18 w.u. for the non-
staggered calculations.! However, the change in slope of the non-staggered
residual may indicate that the full potential of multigrid acceleration has
yet to be achieved.

In a second test case, a cube is inserted in a cavity (Fig. 3), forcing the
flow to negotiate this asymmetric three-dimensional obstacle, partly by the
velocity magnitude change, partly by flow separation. It is believed that
this flow geometry serves as a good test of the pressure/velocity coupling

10r 23 w.u. for the same residual decrease; however, this is more arbitrary, because
of the much lower initial residual at the finest grid.
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because the major force behind the flow adjustment is the pressure field.
The residual history, (Fig. 4) indicates very similar convergence rates for
the staggered and non-staggered calculations. The resulting flow field in a
symmetry plane (Fig. 5) indicates well resolved separation bubbles around
the cube corners.

5 Discussion and conclusions

The new method of incompressible flow calculation using non-staggered
grids and its multigrid implementation are examined for suitability in a
complex flow field geometry. The presence of two sets of velocity values,
both of which satisfy the (discrete form of the) governing equations increases
the overall level of accuracy for a given grid size, although this remains to
be quantified. o

In the numerical experiments performed so far the method proved to be
stable, without any tendency to produce an oscillating pressure field, which
is a common feature of some non-staggered methods [18]. The method
permits discretization on a trivially coarse grid (with a single node in the
interior), which is very convenient in a FAS multigrid implementation,
because it allows the coarse grid to contain the lowest number of nodes.
Thus significantly coarser grids can be used in complex geometries. For
example, in the case of a cube in a cavity (see the previous section) the
coarsest grid (6x6x6 nodes) has only one control volume located between
the cube and the cavity wall at one side. If the calculation method required
two nodes at minimum, the overall node count at the coarse grid would
increase eight times, thereby substantially increasing the work needed to
obtain exact solution at the coarsest grid.

Various tests performed so far always produced smooth solutions both
in velocity and pressure, which indicate a high ellipticity measure of the
proposed method. The analytical evaluation of the ellipticity measure
remains to be carried out (following e.g. [25, 16]).

The amount of computational work of the proposed method is slightly
larger that of the Rhie and Chow [19] method. It is comparable to
the work in the SCGS method of Vanka, requiring the same amount of
work to calculate face velocities and pressure coefficients and, in addition,
the calculation of the nodal velocity coefficients, i.e. approximately 25%
increase in two-dimensional and 14% in three-dimensional calculations. This
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overhead exists only for the simplest flow problem because any additional
variable that is solved permits nodal velocity coefficients to be reused (with
proper scaling of the diffusion part).

References

[1] A. Brandt. Guide to multigrid development. In M ultigrid Methods:

3]

[4]

[5]

[6]

[7]

8]

Proceedings, Koln-Porz, 1981, pages 220-312. Springer-Verlag, Berlin,
1982. - R - , L

B. Favini and G. G;i’j'. MGtechmques for s@jgige;gdidiﬂ"erences. In
Holstein D.J., Paddon H., editor, Multigrid Methods for Integral and
Differential Equations, pages 253-262, Oxford, 1985. Clarendon Press.

G.E. Schneider. A novel colloccated finite difference procedure for the

numerical computation of fluid flow. In Proceedings of 4th ATAA/ASME
Joint Thermophysics and Heat Transfer Conference. 'ATAA-86-1330,

1986:.7, s e o Tome

B. R. Hutchinson, P. F. Galpin, and G. D. Raithby. Application
of additive correction multigrid to the coupled fluid flow equations.
Numerical Heat Transfer, 13:133-147, 1988. -

S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations
in primitive variables. Journal of Computational Physics, 65:138-138,
1986. o ,

M. C. Thompson and J. H. Ferziger. An adaptive multigrid solution
technique for the incompressible navier-stokes equations. Journal of
Computational Physics, 83:94-121, 1989.

L. Fuchs and H.-S. Zhao. Solution of three-dimensional viscous incom-
pressible flows by a multi-grid method. [Intern ational Journal for Nu-
merical Methods in Fluids, 4:539-555, 1984.

M. Hortmann, M. Peric, and G. Scheuerer. Finite volume multigrid
prediction of laminar natural convection: Bench-mark solutions. Journal
for Numerical Methods in Fluids, 11:189-207, 1990.




[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. A. Rubini, H. A. Becker, E. W. Grandmaison, A. Pollard, A. Sobiesiak,
and C. Thurgood. Multi-grid acceleration of three dimensional turbulent
variable density flows. Numerical Heat Transfcr, B: Fundamentals,
pages 163-177, 1992.

S. P. Vanka. Fast numerical computation of viscous flow in a cube.
Numerical Heat Transfer, Part B: Fundamentals, 20:255-261, 1991.

P. H. Gaskell, A. K. C. Lau, and N. G. Wright. Comparison of two
solution strategies for use with higher-order discretization schemes in
fluid flow simulation. International Journal for Numerical Methods in
Fluids, 8:1203-1215, 1988.

C. Hirsch. Numerical Computation of Internal and FEternal Flows,
volume 1: Fundamentals of Numerical Discretization. John Wiley &
Sons, New York, 1988. ’

M. Perié, R. Kessler, and G. Scheuerer. Comparison of finite-volume
numerical methods with staggered and collocated grids. Computers and
Fluids, 16:389-403, 1988.

S. Majumdar.. Role of underrelaxation in momentum interpolation for
calculation of flow with nonstaggered grids. Numerical Heat Transfer,
13:125-132, 1988.

P. Coelho, J. C. F. Pereira, and M. G. Carvalho. Calculation of laminar
recirculating flows using a local non-staggered grid refinement system.
International Journal for Numerical Methods in Fluids, 12:535-557,
1991.

W. W. Armfield. Finite difference solutions of the navier-stokes equa-
tions on staggered and non-staggered grids. Computers and Fluids,
20(1):1-17, 1991.

T. M. Shih and A. L. Ren. Primitive-variable formulations using
nonstaggered grids. Numerical Heat Transfer, 7:413-428, 1984.

25



=

26

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering
on numerical schemes. Inlernational Journal for Numerical Methods in
Fluids, 9:413-428, 1989.

C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow
past an isolated airfoil with trailing edge separation. AIAA-82-0998,
1982.

D. B. Spalding. A novel finite-difference formulation for differential
expressions involving both first and second derivatives. International
Journal of Numerical Mcthods in Engineering, 4:551-559, 1972.

D. Xiao, H. A. Becker, E. W. Grandmaison, and A. Pollard. The
calculation of a jet in a crossflow using embedded/overlapping grid
techniques, multi-grid acceleration and a modified QUICK differencing
scheme. Submitted to: International Journal of Computational Fluid
Dynamics, 1993.

D. Matovic and A. Pollard. Evaluation of a new block non-staggered
calculation method for an incompressible flow and its multlgrld acceler-

atlon Submltted for pubhcatlon

W. Shyy and C-S. Sun. Development of a pressure-correction/staggered-
grid based multigrid solver for incompressible recirculating flows. Com-
puters and Fluids, 22:51-76, 1993.

W. Hackbush. Multi-Grid Methods and Applications. Springer-Verlag,
Berlin, 1985.

A. Brandt and N. Dinar. Multigrid solutions to elliptic flow problems.
In Numerical Methods for Partial Differcntial Fquations, pages 53-147.
Academic Press, New York, 1979.



Figure 1: The layout of a non-staggered grid. Only the nodal variables
require storage.

3D Cavity Flow
5 grids: 2x2x2 ... 32x32x32
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Figure 2: Mass residual history for a lid-driven cavity flow. Re = 400.
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Figure 3 The grid for a flow around the cube in a lid-driven cavity.
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Figure 4: Mass residual history for the flow around the cube in a lid-driven

cavity. Cavity Re=400.
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Moving lid

Figurc 5: Flow around a cube in a lid-driven cavity: particle traces in a
symmetry plane.
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MULTIGRID AND CYCLIC REDUCTION APPLIED TO THE HELMHOLTZ EQUATION

N94-235676

Kenneth Brackenridge
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Oxford OX1 3QD, U.K.

ABSTRACT

We consider the Helmholtz equation with a discontinuous complex parameter and
inhomogeneous Dirichlet boundary conditions in a rectangular domain. A variant of the direct
method of cyclic reduction is employed to facilitate the design of improved multigrid components,
resulting in the method of CR-MG. We demonstrate the improved convergence properties of this
method.

1 INTRODUCTION

Microwave heating of foods has revolutionised the food processing industry. Effective and
eflicient microwave heating depends very much on a detailed knowledge and understanding of the
dielectric properties of the food to be processed. This need has given rise to extensive research into
the dielectric properties of materials; see, for example, Tinga and Nelson [1].

Microwave heating can be compared to heating by alternating current. The electric field of
alternating current changes direction approximately 100 times each second, whereas the microwave
field changes direction approximately 5 billion times each second. The heating effect is
accomplished by energy transfer to dipoles, most commonly water. Most foods contain between 50
and 90 percent water. By attempting to follow the very rapidly changing microwave electric field,
the molecular vibrations of the dipoles are strengthened, thus increasing the temperature of the
water and hence the food.

The scalar pofential ¢ associated with the microwave field satisfies the wave equation

82
Vi - Sk =0, (1)

which is derived from Maxwell’s equations of electromagnetics. The parameter ¢ describes the
permittivity of the medium and the parameter p the permeability. However, the radiation field in
a microwave oven varies harmonically in time, and so we look for a solution of equation (1) in the

form
B(x, t) = e u(x),
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Figure 1: A two-dimensional model of a microwave oven.

where u is a time-independent scalar potential function and w is the frequency of the microwave
radiation. By substituting this expression into equation (1), we see that u satisfies the Helmholtz
equation

Viu 4 §u =0,

where 6 := epw?. In general, € and yu are complex numbers, with real parts related to a material’s
ability to store electrical and magnetic energy respectively, and imaginary parts related to a
material’s ability to dissipate electrical and magnetic energy respectively. However, the
permeability of biological materials is close to that of free space, i.e. g & po = 47 x 1077 Hm™".
Hence, since most domestic microwave ovens operate at a frequency of 2450 MHz, we can calculate
6 for any given permittivity e.

The oven is represented schematically (in two dimensions) by the rectangular domain depicted
in Fig. 1. Region 1 corresponds to free space and so € = €0 = 5= x 107® Fm™" and § is a real
constant in this region. Region 2 corresponds to the heated material and so § is a complex constant
in this region. Energy is fed into the system by a magnetron via the waveguide. Hence, in this
paper, we consider the solution of the Helmholtz equation with a discontinuous complex parameter
and inhomogeneous Dirichlet boundary conditions in a rectangular domain.

We close this section with a plan of the paper. In section 2 we describe the mathematical
problem and discuss the smoothing abilities of two multigrid smoothers. In section 3 we describe
the technique of approximate cyclic reduction and show how this can be used to design improved
multigrid components. Numerical results are presented in section 4 and some concluding remarks
are made in section 5.

2 MATHEMATICAL PROBLEM

Consider the complex two-dimensional Dirichlet boundary value problem

V2u+5u=0 in Q=Q1UQ2
st. u=g on 09,
with data _ .
5 = { gl in subdomain (2b)
2

in subdomain £, ’

where ; and §, are rectangular subdomains of € (as in I'ig. 1).
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Operator Definitions

Before attempting to solve this problem by the multigrid method, we need to carefully consider
the definitions of the discretisation, restriction and prolongation operators. In [2], De Zeeuw
considers the solution of general linear second order elliptic partial differential equations over
similar domains. He notes that the rate of convergence of standard multigrid methods often
deteriorates when the coefficients in the differential equation are discontinuous; he proposes
matrix-dependent grid transfer operators to overcome these difficulties. However, in our case, the
discontinuity occurs only in the coefficient of u (viz. ), and not of Vu. Hence we proceed in the
following way to define operator P = P(§) in the domain §2, where P can be taken to represent the
discretisation, restriction or prolongation operator. Firstly, if § takes value §; in subdomain £;

(i = 1,2), then we set the value of § on the interior boundary between {, and 2, to
63 := (81 + 8,). Secondly, P is defined piecewise by

P(él) in Ql
P = { P&) inQ . (3)
P(63) on 09,

In practice, this definition of P, for discontinuous §, does not seem to impair the convergence of
the multigrid algorithm for relevant values of 6.

Equivalent System of Real Equations

Consider the discrete analogue of problem (2). Suppose § = a+i8 € C and g € R. Using a
central difference discretisation on a mesh of n x n intervals, the matrix of the discrete system
Au = f is represented in stencil notation by

1 1

where A € C=Wx ¢ = 1 and p:= 6h* — 4 = (ah® — 4) + ih*. Hence, while most linear
systems which arise in practice have real coefficient matrices, the discretisation of this problem
yields a complex linear system. Further applications which give rise to complex linear systems
include discretisations of the time-dependent Schrédinger equation, inverse scattering problems and
underwater acoustics.

A popular approach for solving complex linear systems is to solve the equivalent real linear
systems for the real and imaginary parts of u. However, the following remarks, due to Freund [3],
cast doubt on this approach. Suppose that A is a general complex m x m matrix. By taking real
and imaginary parts, we can rewrite the complex system as the real linear 2m X 2m system

pa Red ImA Reu \ [ Ref
US| TmA —Red )\ =Tmu ] =\ Imf |~
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It can then be shown that B has eigenspectrum
o(B) = {) €eC|\? € 0(AA)},

which means that o(B) is symmetric with respect to the real and imaginary axes and hence the
eigenvalues always embrace the origin. Now if A is complex symmetric (as is the case with (4)),
then B is a real symmetric matrix with real eigenvalues symmetrlcaHy distributed about the origin,
i.e. B is symmetric indefinite. Therefore the equivalent real system is often harder to solve than the

~ ~original complex one.

Smoothing Analysis

Multigrid smoothing methods are usually basic iterative methods, the properties of which are
well understood. As the name suggests, the function of a multigrid smoothing method is to reduce
the rough (high frequency) components of the error as efficiently as possible. This is basically a
local task and so the smoothing efficiency of a method can be analysed by local Fourier mode
analysis [4], neglecting interactions with boundaries. The smooth (low frequency) error components
are reduced on the coarser grids. There is a natural distinction between high and low frequencies
depending on the type of grid coarsening chosen. Essentlally, the low frequencies are those which
are visible on the coarser grids. In principle, smoothing methods need not be convergent (see [5],
chpt 7), although in practice most are.

Consider the discrete analogue of problem (1), Au = f, defined on a mesh of n x n intervals.
Basic iterative methods are based on a matrix splitting A = M — N and are defined by

Mul™t) = Nu(™ 4 f,

The algebraic error arising from the iterative solution of this system of equations is defined by
el ;= ul™ — u and satisfies the equation Me(™*+) = Ne(™). Denoting the stencils of M and N

by [M] and [N] respectively, this equation can be rewritten in stencil form as [M]e; (m“) = [N] (m).
Now if we define e{™+1) := X e{™ and note that the algebraic error can be represented asa
combination of local Fourier modes

efy) = Am U0, (0, ¢) € @:= {(B2, Y : —§ +1<p, ¢ < 3},

then by substituting this into the stencil representation of the error recurrence we define the error

amplification factor (V] o)
etV
MO, ¢) = [M] ei(i8+k8) "

The error amplification factor is the factor by which the amplitude of the (0, ¢) Fourier mode is
multiplied as a result of a single smoothing iteration. Now in the case of standard grid coarsening,
the sets of smooth and rough frequencies are defined by

O,:=0n (-%, %)%
O, := 0\0,.
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Figure 2: Fourier smoothing factors pP for PGS and KACZ.

Hence the Fourier smoothing factor, which is the worst factor by which all high frequency error
components are reduced per iteration, is defined by
= max_ |A(f .
pi= max M0, 9)
Note however that this definition of the smoothing factor is only valid for boundary conditions of
harmonic type. The influence of Dirichlet boundary conditions can be taken into account

heuristically (see [6] and [7], for example) in the following way. The error at the boundary is
always zero and so we define a new set of rough frequencies as

OP:=0, N {(0, ) €0 : 0+ 0 and/or ¢ # 0}.
The corresponding Fourier smoothing factor is defined by

D
= max _|A(0 .
p 0B 1A(0, 8)I
This is a mesh-dependent definition. A mesh-independent definition, introduced by Brandt [4], is
obtained by replacing the discrete set © with a continuous analogue, but this is more difficult to
compute numerically and gives less realistic results in cases where the type of boundary condition
has much influence.

There are many possibilities for the choice of smoothing method (see [7], for example), but for
brevity we consider only two, point GauB-Seidel iteration (PGS) and Kaczmarz iteration (KACZ).
The latter of these two methods, dating back to 1937 [8], is considered here because, when applied
to the complex linear system Au = f, the method converges for all distributions o(A) of eigenvalues
of A. The reason for this is that solving the system Au = f using KACZ is equivalent to solving the
system AAfv = f with u = A¥v (i.e. postconditioning) using PGS, and the matrix AAY is
Hermitian positive definite, thus guaranteeing convergence. Applying the smoothing analysis to
stencil (4), the error amplification factors for PGS and KACZ are :

eif 4 it
T ptet g eid’

Apgs =
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\ - (eio + ei¢)(ei6 +e®+p+p)+ 9ei(—0+¢)
KACZ = 4+ pp + (e_;o + 6_.'4,)(6—{9 +ei¢ +p+fﬁ) + 2¢i(6-¢)°

for some p = (ah? —4) +iBh? and (0, ¢) € ©. Fig.2 displays contour plots of pBgs and pRacy
plotted as functions of ah? and Bh?. For fixed values of h and a = Re é§, as B = Im ¢ increases,
pPas increases and pRacy decreases. Hence we might expect the multigrid convergence rate to
improve slowly with a KACZ smoother and deteriorate more rapidly with a PGS smoother as 3
increases. This is borne out in practice. Finally, as a rule of thumb, a good smoothing method has
a smoothing factor pP < 3- In this sense, neither of the two methods considered here is a good

smoothing method for problem (2).

3 CYCLIC REDUCTION AND MULTIGRID

Cyclic reduction (CR) is a direct method of solution for tridiagonal and block-tridiagonal
systems of linear algebraic equations [9], [10]. For tridiagonal systems which represent . .

approximations to 1-D second order ordinary differential equations, CR is as efﬁmentasmulh_gnd
(MG). For problems in higher dimensions CR becomes too computationally expensive due to fill-in
within the blocks. However, the design of MG methods in higher dimensions can be facilitated by

drawing comparisons between MG and CR (sec Shaw [11]).

Approximate Cyclic Reduction

Consider the system of equations Lu = f. If v is an approximation to the true solution u, then
we define the error vector as e:=u-—v and the residual vector as r:=f — Lv = Le. Then
assuming that the error vector e is sufficiently smooth (a condition normally guaranteed by a few
applications of a smoother in a MG algorithm), the fill-in can be minimised by making accurate
Taylor expansion approximations of the outlying errors. This method is known as approzimate

cyclic reduction (ACR) [12].

Now consider a two-grid method applied to a two-dimensional Toeplitz system. Suppose the two
grids have mesh sizes k and H = 2h and the fine grid matrix has stencil

b
Lhwbab,
b

where a and b are scalars. Given an initial approximation v to u, we want to solve the equation
Lye = r for e to obtain an improved approximation v + e. The method of ACR approaches this

problem as follows. ~ =~

Eliminate the outlying errors in the stencil using neighbouring equations to give
b2
2b? 0 22
In~ |8 0 42—a® 0 ¥
2b* 0 2b?
b2
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This first step of CR has destroyed the band structure of the original five-point operator. Further
steps of CR would introduce more fill-in, resulting in a relatively inefficient process. Instead,
assuming the errors are sufficiently smooth, approximate the errors at the NW, NE, SW and SE
positions (in compass point notation) using accurate Taylor series expansions. This defines the
ACR-modified coarse grid matrix, which has stencil

2b?
0
Ly~o| 20 0 82—a® 0 28 |,
0
2

where o is an arbitrary scaling parameter. From the above information, the definition of restriction
from the fine grid to the coarse grid can also be gleaned. The ACR-modified restriction operator

has stencil
b

Rim~ag|b —a b]. (5)
b

For theoretical considerations it is very convenient to choose restriction and prolongation operators
which satisfy the relation Pf; = RE*, where Rf’* is the adjoint operator of R with respect to a
suitably defined scalar product. However, the adjoint of the five-point restriction operator (5) is not
a reasonable prolongation (see [13], p. 78). Alternative definitions of the prolongation operator are
discussed in the following subsection.

ACR and the Helmholtz Equation

Consider a two-grid method, with mesh sizes h and H = 2k, applied to the fine grid Helmholtz
differential operator Lyu := V?u + §u. Using a central difference discretisation on a mesh of n x n
intervals, the fine grid matrix has stencil

1 1
Lh’V*iz—i 111)1 ’

where h := % and p:= §h* —4. Hencea = % and b= Fl,- Now if we choose o = %2, then the
ACR-modified coarse grid matrix and restriction operator have stencils

1
1 0
~ — 0 4-1p? 1
1
1
RE~=-11-p 1
1
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Therefore the analogous coarse grid Helmholtz differential operator is defined as

Luu =V + 81— %’;)u, i.e. ACR suggests solving the Helmholtz equation with a different value
of § on the coarse grid in order to stabilise the MG process. For positive real values of § for which
Ly, is indefinite, this corresponds to solving the Helmholtz equation with a smaller value of 6 on the
coarse grid, thus reducing the indefiniteness of Ly. There are various ways to define the
prolongation operator. Possibilities include seven-point and nine-point prolongation [14]. However,
a more effective definition of the prolongation operator for this interface problem is

1 4 —4p 4
Pli~—| —4p 3p* —4p |,
Wy _4p 4

which is derived from the tensor product of the one-dimensional ACR-modified prolongation
operator. To extend these ideas to an m-grid process, where k; is the mesh size of grid Q; and
h,-“ = 2h;, we proceed as follows.

32

Define é; := 6 and é; := Sk-1(1 — M) i=6r_1¢k (2< k <m)and p; := 6xh? — 4. Then the
differential operator on grid Q is defined as .

Liu:=Vu+ §u, -

for 1 < k < m, provided o = b-si. Therefore, the ACR-modified definitions of thér matrix of the
discrete system on grid Q and the restriction and prolongation operators have stencils '

1 1
Lk~h—£ L pe 1,

1
1
1
Rﬁ-H Ng I —px 1 y
1

. 4 —dp, 4
Pl ~ 257 —4pr  3p}  —4px
Pe| 4 —4pe 4

respectively. We call this ACR-modified multigrid process CR-MG. Note that the CR-MG
restriction operator is similar to the operator naturally suggested by the principle of total reduction
(see [15] and [16], for example). Further, for Laplace’s equation (i.e. § = 0), pr = —4 and the

CR-MG restriction operator corresponds to half weighting.

4 NUMERICAL RESULTS

Consider the complex two-dimensional Dirichlet boundary value problem

Vi +6u=0 in Q=0;UQ; : unit square
st. u=g on 09,
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with data
5 — {30+10i in Q:3<z,y<?

1 in Qliﬂ\ﬁz ’
{sin(4y-%)7r on z=0,"—§<y<§

g = 0 elsewhere on 90}

For convenience, we consider a domain 2 consisting of two concentric squares. The value of § in 2,
is a typical value calculated from the data in [1]. In the following experiment we assess the
efficiency of the CR-MG algorithm, as described in the preceding section, and compare it with
standard MG using full weighting restriction and nine-point prolongation.

The problem is discretised piecewise according to (3) and (4), using central differences on a
65 > 65 grid. A four-grid method is employed, with standard grid coarsening. This ensures good
resolution of the inner subdomain ; on the coarsest grid. The multigrid schedule used is the
V-cycle with two pre-smoothing and two post-smoothing iterations, and LU decomposition with
partial pivoting is used to solve the defect equation exactly on the coarsest grid. The initial
estimate is taken to be the zero vector and convergence is measured by log,, ||r]l;, where 7 is the
residual vector and [[-|[, is the usual Euclidean norm.

With convergence set to a tolerance of
logye |Irll, < -9,

the convergence times of MG and CR-MG with PGS and KACZ smoothers were measured and the
results are displayed in Table 1. All convergence times were measured in seconds on a Sun SPARC-

Table 1: CPU Convergence Times

| time (s) ] PGS | KACZ |
MG 22.8 | 191.6
CR-MG || 18.5 | 155.9

workstation. We immediately notice that both MG and CR-MG converge much more rapidly with
a PGS smoother than with a KACZ smoother. This is not unexpected, considering the smoothing
properties of these two iterative methods. Further, KACZ is a more computationally intensive
smoother than PGS, having a 13-point stencil as compared to the 5-point stencil of PGS.

However, most importantly, we find that with both smoothers the rate of convergence of
CR-MG is significantly faster than that of MG. In fact, with both smoothers CR-MG provides a
19 percent saving in CPU time over MG. This is a significant saving, especially for larger problems.
The rates of convergence of MG and CR-MG with a PGS smoother are compared graphically in
Fig.3. Both plots are approximately straight lines, a consequence of the grid-independent
convergence of the multigrid method.
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Figure 3: Convergence of MG and CR-MG with a PGS smoother.

5 CONCLUDING REMARKS

In this paper, attention has been focussed on improving the design of the standard multigrid
method with respect to a particular problem, namely the complex-valued microwave oven problem.
By drawing a comparison with the direct method of cyclic reduction, improved discretisation,
restriction and prolongation operators have been designed, resulting in savings of up to 19 percent
in CPU time used.

Only two smoothing methods have been considered here, point GauB-Seidel and Kaczmarz.
However, there are many more robust smoothers, such as alternating damped Jacobi, alternating
symmetric line GauB-Seidel and incomplete LU decomposition. These methods, and many more,
have been summarised and analysed in detail in [7]. Improvements in the convergence properties of
the modified multigrid method (CR-MG) will almost certainly be realised by using such smoothers.

Finally, attention in this paper has been restricted to the microwave oven problem, although the
ideas presented here can be extended to other problems. For example, in [11], these ideas were
applied to the convection-diffusion equation and it was shown that approximate cyclic reduction
can be used to define the ideal quantity of coarse grid artificial viscosity and the direction in which
it lies.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr D.F. Mayers, for his help and invaluable advice and
Dr A.K. Parrott for reading through a draft of this paper. This work was supported by an SERC
Research Studentship, for which I am grateful. T would also like to thank British Nuclear Fuels plc

for their Bursary Award.

40



REFERENCES

[1] Tinga, W.R. and Nelson, S.0.: Dielectric Properties of Materials for Microwave Processing —
Tabulated. J. Micro. Power, 8(1) : 23-65 (1973)

[2] De Zeeuw, P.M.: Matrix-Dependent Prolongations and Restrictions in a Blackbox Multigrid
Solver. J. Comp. Appl. Math., 33 : 1-27 (1990)

[3] Freund, R.W.: Conjugate Gradient Type Methods for Linear Systems with Complex
Symmetric Coefficient Matrices. STAM J. Sci. Stat. Comput., 13 : 425-448 (1992)

[4] Brandt, A.: Multi-Level Adaptive Solutions to Boundary Value Problems. Math. Comp., 31 :
333-390 (1977)

[5] Wesseling, P.: An Introduction to Multigrid Methods. John Wiley and Sons, Chichester (1992)

[6] Chan, T.F. and Elman, H.C.: Fourier Analysis of Iterative Methods for Elliptic Boundary
Value Problems. STAM Rev., 31 : 20-49 (1989)

[7] Wesseling, P.: A Survey of Fourier Smoothing Analysis Results. Int. Series of Num. Maths,
98 : 105-127 (1991)

[8] Kaczmarz, S.: Angeniherte Auflésung von Systemen Linearer Gleichungen. Bulletin de
I’Academie Polonaise des Sciences et Lettres, A35 : 355-357 (1937)

[9] Buzbee, B.L., Golub, G.H. and Nielson, C.W.: On Direct Methods for Solving Poisson’s
Equations. SIAM J. Numer. Anal., 7: 627-656 (1970)

[10] Sweet, R.A.: A Generalized Cyclic Reduction Algorithm. SIAM J. Numer. Anal., 11 :
506-520 (1974) ’

[11] Shaw, G.J.: Cyclic Reduction and Multigrid. Mayers, D.F., Rollet J.S. and Shaw, G.J.: Fast
Iterative Solvers, OUCL Lecture Notes, Oxford University, Oxford (1991)

[12] Swarztrauber, P.N.: Approximate Cyclic Reduction for Solving Poisson’s Equation. SIAM J.
Sci. Stat. Comput., 8 : 199-209 (1987)

[13] Hackbusch, W.: Multigrid Methods and Applications. Computational Mathematics (4),
Springer-Verlag, Berlin (1985)

[14] Stiiben, K. and Trottenberg, U.: Multigrid Methods : Fundamental Algorithms, Model
Problem Analysis and Applications. Hackbusch, W. and Trottenberg, U., eds.: Multigrid
Methods, Lecture Notes in Mathematics (960), Springer-Verlag, Berlin (1982), pp.1-176

[15] Schréder, J., Trottenberg, U. and Witsch, K.: On Fast Poisson Solvers and Applications.
Bulirsch, R., Griegorieff, R.D. and Schrdder, J., eds.: Numerical Treatment of Differential
Equations, Lecture Notes in Mathematics (631), Springer, Berlin (1978), pp.153-187

[16] Ries, M., Trottenberg, U. and Winter, G.: A Note on MGR Methods. Lin. Alg. Appl., 49 :
1-26 (1983)

41



L. VU ROy, LR

H

W nEy



N9O4:238677

Uniform Convergence of Multigrid V-Cycle Iterations for Indefinite and Nonsymmetric Problems*

VA
James H. Bramble
Cornell University / 7 7 ,7_3 é

Ithaca, NY 14853-7901
/O" / 7

Do Y. Kwak
Korea Advanced Institute of Science and Technology
Taejon, Korea 305-701

Joseph E. Pasciak
Brookhaven National Laboratory
Upton, NY 11973

To appear: SIAM Journal of Numerical Analysis
Dedicated to Professor Seymour Parter on the occasion
of the sixty-fifth anniversary of his birthday.

ABSTRACT

In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic
problems. In this multigrid method various types of smoothers may be used. One type of smoother which we
consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi and Gauss-
Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal
form, that is, the product of the operator and its transpose. Other smoothers studied include point and line,
Jacobi and Gauss-Seidel. We show that the uniform estimates of (ref. 6) for symmetric positive definite problems
carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite
problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is
sufficiently fine (but not depending on the number of multigrid levels).

1. INTRODUCTION

The purpose of this paper is to study certain multigrid methods for second order elliptic boundary value
problems including problems which may be nonsymmetric and/or indefinite. Multigrid methods are among
the most efficient methods available for solving the discrete equations associated with approximate solutions of
elliptic partial differential equations. Since their introduction by Fedorenko (ref. 15), there has been intensive
research toward the mathematical understanding of such methods. The reader is referred to (ref. 19), (ref. 17) and
(ref. 3) and the bibliographies therein. Most of these works concern symmetric, positive definite elliptic problems
although a few consider nonsymmetric and/or indefinite problems. In particular, (ref. 1),(ref. 18), (ref. 10) and
(ref. 24) deal with such multigrid algorithms and are most closely related to the subject of this paper. All of these
papers share the requirement that the coarse grid be sufficiently fine. We shall briefly describe their contents.

*This manuscript has been authored under contract number DE-AC(2-T6CH00016 with the U.S. Department of Energy. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to
do so, for U.S. Government purposes. This work was also supported in part under the National Science Foundation Grant No. DMS-9007185
and by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University. The second author was also partially
supported by the Korea Science and Engineering Foundation.
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The paper by Bank (ref. 1) derives uniform convergence estimates for the W-cycle multigrid iteration with
both a standard Jacobi smoother and a smoother which uses the operator times its adjoint. In each case, a
sufficient number of smoothings are required and a sufficiently fine coarse grid, depending on the number of
smoothings, is needed. Some regularity for the elliptic partial differential equation was also required.

Mandel studied the V—cycle iteration and showed that it was effective with only one smoothing and a
sufficiently fine coarse grid. His result requires that the underlying partial differential equation satisfies the “full
elliptic regularity” hypothesis and generalizes the results of Braess and Hackbusch (ref. 2) for the symmeftric
positive deﬁmte problem. T C

Bramble Pasciak and Xu (ref. 10) studied the symme'mc smoother mtroduced by Bank and showed that
the W-cycle and variable V—cycle worked without making the undesirable requirement of “sufficiently many
smoothings”. Somewhat more than minimal regplrarrirtyr was needed.

In (ref. 24), Wang showed that, for the standard V-cycle with one smoothing, the “reduction factor” for the
iteration error was bounded by 1 — C/J + Cih; where J is the number of levels, h; is the size of the coarsest grid
and C and C, are constants. This estimate deteriorates with the number of levels and will be less than one only if
the coarse grid is subsequently finer as the number of levels increases. Minimal elliptic regularity was assumed.

In this paper uniform iterative convergence estlmates for V-cycle multlgnd methods applied to nonsymmetric
and/or indefinite problems are proved under rather weak assumptions (e.g., the domain need not be convex).
Uniform estimates were shown to hold in (ref. 6) and (ref. 8) for the V—cycle with one smoothing step in
the symmetric positive definite case under such hypotheses. We show that these results carry over to the
nonsymmetric and/or indefinite case for a variety of smoothers. The coarse grid must be fine enough but need
not depend on the number of levels J. Such a condition seems unavoidable since, in many cases, it is needed even
for the approximate problem to make sense.

In recent years, some other techniques have been proposed to handle the nonsymmetric indefinite case. One .

“approach in (ref. 14), (ref. 4) and (ref. 7) is to precondition with a symmetric operator and then solve certain

normal equations by the conjugate gradxent method. One possible advantage of such a method is that some

nonsymmetric problems which are not “compact perturbations” of symmetric ones may be treated. Of course, the

usual normal equations may be formed and then preconditioned (cf. (ref. 7) and (ref. 20)); this approach seems
to be rather restrictive in that good preconditioners may be difficult to construct Other recent approaches have:
included Schwarz type methods (ref. 12) and two-level methods in which a “coarse space” is introduced to reduce
the problem to one with a positive definite symmetric part (cf. (ref. 4), (ref. 13) and (ref. 25)).

The remainder of the paper is organized as follows: In Section 2, we describe a model problem and introduce
the multigrid method. In Section 3, smoothers based on the symmetric problem (and used in our nonsymmetric
and/or indefinite applications) are defined and the relevant properties which they satisfy are stated. Section
4 develops smoothers based on the original problem. The main results of the paper, which provide iterative
convergence rates for the multigrid algorithms with the smoothers of Sections 3 and 4, are given in Section 5.

2 THE PROBLEM AND MULTIGRID ALGORITHM.

We set up the modelvggnsymmetnc problem and the simplest multigrid algonthm in this section. We consider,
for sxmphcxty, the Dirichlet problem in two spatial dimensions approximated by piecewise linear finite elements
on a quasi-uniform mesh. The multigrid convergence results hold for many extensions and generalizations as

discussed at the end of Section 5.
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We consider as our model problem the following second order elliptic equation with homogeneous boundary
conditions.

2 2
i} du du .
_”E':l E(a"gz,—)-'- ’,__E_l b,‘a—zi-{-a‘U— f in Q
u=0 on 689,

(2.1)

where §? is a polygonal domain (possibly nonconvex) in R? and {a;;(z)} is bounded symmetric, and uniformly
positive definite for z € Q. We assume that a;; is in the Sobolev space W;(Q) for p > 2/v (see, (ref. 16) for
the definition of W;(Q)). Further, we assume that b; is continuously differentiable on Q) and that |a] is bounded.
Finally, we assume that the solution of (2.1) exists.

Let H'(S?) denote the Sobolev space of order one on Q (cf., (ref. 16)) and let H(S2) denote those functions in
H(Q) whose trace vanish on 8Q. For v,w € H}(f), define

(2.2) Alv,w) = ,‘,Y:l-/ ij g:i%dz+ g/ﬂb;%w d:c+-/{;avw dz.
The solution u of (2.1) satisfies

(2.3) Au,v) = (f,v)  for all v € Hy(Q),

where (-, -) denotes the inner product in L%(Q).

For the analysis, we introduce a symmetric positive definite form /i( -, ) which has the same second order part

as A(-,"). We define A(-,) by
A(u,v) = E_/a,,gig;)—)dz+/uvdz.

iy=1

The difference is denoted by i
D(u,v) = A(u,v) — A(u,v).

The form D(-,-) satisfies the inequalities
(2.4) |D(u, v)| < Cllully [lo]| and [D(u,v)] < Cllul{|ll; -

Here ||-||, and ||-|| denote the norms in H'(2) and L?(Q) respectively. The second inequality above follows

from integration by parts. Here and throughout the paper, ¢ or C, with or without subscript, will denote a
generic positive constant. These constants can take on different values in different occurrences but will always be
independent of the mesh size and the number of levels in multigrid algorithms.

By the assumptions on the coefficients appearing in the definition of A(, ), it follows that the norm A(v, v)!/?
for v € H'(Q) is equivalent to the norm on H!($2). Thus, we take

llolly = Av, v)"

We develop a sequence of nested triangulations of 2 in the usual way. We assume that a coarse triangulation
{ri} of Q is given. Successively finer triangulations {ri,} for m > 1 are defined by subdividing each triangle
(in a coarser triangulation) into four by connecting the midpoints of the edges. The mesh size of {r{} will be
denoted to be d; and can be taken to be the diameter of the largest triangle. By similarity, the mesh size of {r}}
is 21-™d,.

For theoretical and practical purposes, the coarsest grid in the multilevel algorithms must be sufficiently fine.
In practice, however, the coarse grid is still considerably coarser than the solution grid. Let L and J be greater
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than or equal to one and set Mg, for k = 1,...,J, to be the functions which are piecewise linear with respect to
the triangulation {7{,,}, continuous on © and vanish on 8Q. Since the triangulations are nested, it follows that

MiCM;C...CM;.
The space M} has a mesh size of hy = 2'L7*d; = 2!~*h,.
Fix k in {1,2,...}. Let us temporarily assume that for every u € My,
(2.5) A(u,v)=0 forallve M, implies u=0.

This assumption immediately implies the existence and uniqueness of solutions to problems of the form: Given a
linear functional F() defined on My, find u € M; satisfying

A(u,¢) = F(¢) forall ¢ € M;.
In particular, the projection operator Py : H 1(Q) — M; satisfying
A(Piu,v) = A(u,v) for all v € My,
is well defined.

Clearly, if (2.2) has a positive definite symmetric part then (2.5) holds. More generally, if solutions of (2.1)
satisfy regularity estimates of the form

(2.6) llulli+a < ClIfll-1+es

then, it is well known (cf., (ref. 22)) that there exists a constant ho such that for hx < ho, (2.5) holds and
furthermore

(2.7) I(Z = Pe)ull < chg|I(I = Pe)ulls.
and finally,
(2.8) |Peull, < Cllull; -

Even if regularity estimates of the form of (2.6) are not known to hold, then (2.5) is known from a recent result by
Schatz and Wang (ref. 23).

Lemma 2.1 (ref. 23). There exists an ho such that (2.5) holds for hx < ho. Moreover, given € > 0, there exists
an ho(€) > 0 such that for all hi € (0, ho}, (2.8) holds and

(2.9) 1T = Pe)ull < €l|(I — Pe)ully.

Remark 2.1. The above ¢ will appear in our subsequent analysis. We note that € can be taken arbitrarily small.
However, L will be taken large enough so that (2.5), (2.8) and (2.9) hold. Thus, the coarse grid size (i.e., L) for
any estimate in which ¢ appears will depend on .

In our analysis, we shall use the orthogonal projectors Py : H3(Q) — M and Q¢ : L*(Q) — M which,
respectively, denote the elliptic projection corresponding to A(:,-) and the L?*(Q) projection. These are defined by

A(Peu,v) = A(u,v) for all v € Mg,
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and
(Qeu,v) = (u,v) for all v € M;.

The multigrid algorithms will be defined in terms of an additional inner product (-, ) on My M;. Examples of
this inner product in our applications will be given in the next section. Additional operators are defined in terms
of this inner product as follows: For each k, define A : My — M, and A; : My — M; by

(Aeu,v)e = A(u,v) for all v € My,

and i i
(Aru,v)e = A(u,v) for all v € M;.

Finally, the restriction operator P,?_, : My — M;_; is defined by

(P2 u, v)k-1 = (4, v)k for all v € M;_;.

We seek the solution of
(2.10) A(u,v) = (f,v), forallveM;.
This can be rewritten in the above notation as

(2.11) Aju=Quf.

We describe the simplest V-cycle multigrid algorithm for iteratively computing the solution u of (2.3). Given
an initial iterate uy € M;, we define a sequence approximating u by

(2.12) uir1 = Mgy (ui, Qs ).

Here Mg;(-,-) is a map of M;M; into M; and is defined as follows.

Definition MG. Set Mg,(v,w) = A;'w. Let k > 1 and v, w be in Mi. Assuming that Mg,_,(-,-) has been
defined, we define Mg, (v, w) by:

(1) zx = v+ Ri(w — Apv).
(2) Mg(v,w) =z + g, where q is defined by

g = Mg, (0, P)_(w — Arzi)).

Here Ry : My — M, is a linear smoothing operator. Note that in this V-cycle, we smooth only as we proceed
to coarser grids.

In Section 3, we define R in terms of smoothing operators defined for the form fi(-, -). Specifically, the
smoothing procedure for the symmetric problem will be denoted Ry : My — M} and we set Ry = Ri. In Section 4,
we consider smoothers which are directly defined in terms of the original operator Ag.

A straightforward mathematical induction argument shows that Mg, (-, ) is a linear map from M;M; into M;.
Moreover, the scheme is consistent in the sense that v = Mg; (v, Ajv) for all v € M. It easily follows that the
linear operator E = Mg,(:,0) is the error reduction operator for (2.12), that is

u—tjy1 = E(u— w).
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Let Th = RxAxPi for k > 1 and set T} = P,. Using the facts that PY Ak = Ak_1Pi-; and Pr 1Py = P and
Definition MG, a straightforward manipulation gives that for k > 1 and any u € My,

u — Mg (0, Ak Pru) = (I — Te)u — Mg_1(0, Ax-1 Pes(I — Ti)u).
Let Exu = u — Mg, (0, AxPiu). In terms of E}, the above identity is the same as
Ey=E(I-Th).
Moreover, by consistency, E = E; and hence
(2.13) E=(I-T)(I-T3)---(I-T)).

The product representation of the error operator given above will be a fundamental ingredient in the convergence
analysis presented in Section 4. Similar representations in the case of multigrid algorithms for symmetric problems
were given in (ref. 9).

The above algorithm is a special case of more general multigrid algorithms in that we only use pre-smoothing.
Alternatively, we could define an algorithm with just post-smoothing or both pre- and post-smoothing. The
analysis of these algorithms is similar to that above and will not be presented.

Often algorithms with more than one smoothing are considered (ref. 3), (ref. 17), (ref. 19). This is not advised
in the above algorithm since the smoothing iteration is generally unstable.

3. SMOOTHERS BASED ON THE SYMMETRIC PROBLEM.

In this section, we consider smoothers which are based on the symmetric problem. The symmetric smoother
will be denoted by Ri. We state a number of abstract conditions concerning these smoothing operators. We
then give three examples of smoothing procedures which satisfy these assumptions. In Section 5, we provide
convergence estimates for multigrid algorithms with Ry = Ry in Definition MG.

The first two conditions are standard assumptions used in earlier multigrid analyses. For k > 1, let K =
I — Ry Ay (defined on M;) and Ti = Ry AcPe (defined on M;). We assume that:
(1) There is a constant Cg such that

(C.l) _(_U_,A_;_l)_k < CR(RL-U, u)k, for all u € My,

where Re = (I-K{ Ki)A;" and A is the largest eigenvalue of Ar. Here and in the remainder of this paper,

+ denotes the adjoint with respect to the inner product fi(-, ).
(2) There is a constant § < 2 not depending on k satisfying

(C.2) A(Tvv, Tiv) < 0A(Tiv,v)  forall v € Mi.
Provided that (C.2) holds, (C.1) is equivalent to

(3.1) (—uj’\::—)k < C(Ryu,u)s, forall u € M.

When Ry is symmetric with respect to (-, )i, (C.2) states that the norm of T} is less than or equal to 8. Even in
the case of non-symmetric Rx, (C.2) implies stability of (I — Ti). In fact, for any w € My, (C.2) implies that

AW - Tow,(I -Tiw) = A(w,w) - 2A(Thw, w) + A(Tiw, Tiw)

(3.2) < Aw, w) - (2 - ) A(Tiw, w) < A(w,w).
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The final condition is that for k£ > 1, there exists a constant C satisfying
(C.9) (Teu, Tou)r < CA'A(Thu,u)  for all u € Mg
A simple change of variable shows that (C.3) is the same as

(R;,v, R;,v)k < C/\;I(Rkv, V)i for all v € M.
In the case when Ry is symmetric, this is equivalent to
(3.3) (Rev, v)e < CAM(w, o) forallv € Mi

and is the opposite inequality of (3.1). Note that both (C.2) and (C.3) hold on M;.
Remark 8.1. If Conditions (C.1)~(C.3) hold for a smoother R; then they hold for its adjoint R} with respect to
the inner product (-,-);. This means that (C.1) holds for By = (I — KiK})A;! and that (C.2) and (C.3) hold

with T} replacing T;. In the case of (C.2) and (C.3), the corresponding inequalities hold with the same constants
as those appearing in the original inequalities.

Ezample 1. The first example of a smoother is the operator
R = :,:II

where I denotes the identity operator on M; and A\x < Xt < CA. In this case, (3.1) holds with C = A/, (C.2)
holds with # = 1 and (3.3) holds with C = Ax/X¢. To avoid the inversion of L? Gram matrices in the multigrid
algorithm, we use the inner product

(3.4) (u,v)e = hi E u(z;)v(z;).

i

Here the sum is taken over all nodes z; of the subspace M. Note that (:,-)s is uniformly (independent of k)
equivalent to (-,-) on M.

The remaining smoothers correspond to Jacobi and Gauss-Seidel, point and line iteration methods. We shall
present these smoothers in terms of subspace decompositions. Specifically, we write

1
(3.5) M=) M|
i=1

where M; is the one dimensional subspace spanned by the nodal basis function @i or the subspace spanned by
the nodal basis functions along a line. The number of such spaces [ = I(k) will often depend on k. These spaces
satisfy the following inequality.

(3.6) llvll < Che|lvl}4 for all v € M.

Ezample 2. For the second example, we consider the additive smoother defined by

I
3.7) Ri=7) A}Qui

i=1
Here Ap;: Mj — Mj is the defined by

(fik,-v, Xk = fi(v,x) for all x € M;
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and Qi : Mi — Mj] is the projection onto M; with respect to the inner product (-,-)¢. The constant v is a scaling
factor which is chosen to ensure that (C.2) is satisfied (see, e.g., (ref. 11),(ref. 5)). Note that Ry, is symmetric

with respect to the inner product (-,-)s. In addition, (3.1) and (3.3) are shown to hold in (ref. 11) with point
Jacobi. When the subspaces M] are defined in terms of lines, (3.1) was proved in (ref. 5). The estimate (3.3)
easily follows in the line case using the support properties of the basis functions and (3.6). For this example, we

take (-, )k = (-,-) for all k.

Ezample 3. We next consider the multiplicative smoother. Given f € M, we define R by

(1) Sgtﬁvo =0¢€ M.
(2) Define v;, fori=1,...,1, by ) o :
v = vi-1 + A;‘,!Qk,i(f — Apvi_y).

(3) Set Rif=u.
Conditions (C.1) and (C.2) are known for this operator (see, e.g., (ref. 5)). The next lemma shows that (C.3)
holds for this choice of Ri. For this case, we also take (-, )x = (-, ) for all k.

Lemma 3.1. (C.3) holds when Ry is defined to be the multiplicative smoother of Example 3.

Proof. The proof uses the techniques for analyzing smoothers presented in (ref. 5). Fii k>1andlet
(3.8) E=(I-PHUI-B7NH---(I1-F)

where B} denotes the A(-,-) projection onto M{ and &, = I. Note that (I - Ti) = & and &y = &+ Bié;_;. Hence

and for every u € My, (cf., (ref. 5)) ,
A((QI - Tk)u, Tku) = fi(u, u) - A(ézu, f:':u)

!
= E/i(ﬁ,ﬁégqu, Ei_1u).
i=1

Since h? < eA;!, the proof of the lemma will be complete if we can show that

!
(3.9) (Thu, Trw) < ch} Y A(Biiru, €im1u).

=1

Expanding the left hand side of (3.9) gives

! i
(3.10) (’j"ku, ‘f";,u) = E Z(}A’,{'é,-_lu, }S,ff:'j_lu).

i=1 j=1

Because of the support properties of {¢}}, the subspaces {M]} satisfy a limited interaction property in that for
every i, the number of subspaces j for which (v,v/) # 0, with v' € M and v/ € M} is bounded by a fixed
constant no not depending on k or I. Lemma 3.1 of (ref. 5) implies that the double sum of (3.10) can be bounded
by np times its diagonal, i.e.

!
(3.11) (Tew, Tew) < no D _(Piéi-1u, Pi€i-1u).

=1
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Applying (3.6) gives
(3.12) (Pidi—1u, Pi€i_1u) < ChEA(Biéi_1u, € u).

Combining (3.11) and (3.12) proves (3.9). This completes the proof of the lemma.

Remark 3.2. The same analysis could be used for successive overrelaxation type iteration. In that case,
& =(I-pP)(I - BB (I- BB}

where 3 € (0,2) is the relaxation parameter.
4. SMOOTHERS BASED ON 4.

In this section, we consider smoothing operators R; which are defined directly in terms of the nonsymmetric
and/or indefinite operator A;. The first smoother is one that was originally analyzed in (ref. 1) and subsequently
studied in (ref. 10).

Ezample 4. For our first example of a smoother based on A, we consider R; defined by
R = X;ZA;‘.

Here, A} is the adjoint of Ay with respect to the inner product (-,-)r and X is as in Example 1. A possible
motivation for such a choice is that, on My, the iteration

vi - vi—l +X;2Ai.(f— Akvi_l)

is stable in the norm (., -),1‘/ ? provided that A% is greater than or equal to half the largest eigenvalue of A} A;.

Ezample 5. This example is closely related to the second example of the previous section. As in that example, we
define the line or point subspaces {M[} fori=1,...,l. Note that the form A(:, ) satisfies a Garding inequality

clA(u,u) —cllulf’ < A(u,u)  for all u € HL(Q).

Consequently, by (3.6), _
(c1 — Ch})A(u,u) < A(u,u)  for all u € Mj.

We will assume that k; is sufficiently small so that
(4.1) Chi < /2.
This means that A(:,-) restricted to M{ has a positive definite symmetric part. Hence, the projector P} : My —
M; satisfying _ '
A(Pyv,w) = A(v,w)  for all w € M

is well defined and satisfies
(4.2) [Pl < Cllull,q; -

The second norm is taken only over the subdomain Q} which is the set of points of Q where the functions in M
are nonzero. In addition, the operator Ay, : M} — M] defined by

(Akiv,wh = A(v,w)  for all v, w € M},
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is invertible. We set Ri by
!
Re=7) ApiQki
=1

We choose ¥ as in Example 2 so that the symmetric smoother defined by (3.7) satisfies (C.2).

Ezample 6. Our final example is that of Gauss-Seidel directly applied to the nonsymmetric/indefinite equations.
We assume that the subspaces { M|} satisfy the conditions of the previous example. The block Gauss-Seidel
algorithm (based on A,) is given as follows:
(1) Set vp =0 € Ms.
(2) Define v;, fori=1,...,1, by
vi=vi-1+ A,:}ij(f - A;,v,-_l).

(3) Set Ri f = w1

5. ANALYSIS OF THE MULTIGRID ITERATION (2.12).

We provide an analysis of the multigrid iteration (2.12) in this section. This analysis is based on the product
representation of the error operator (2.13). All of the analysis of this section is based on perturbation from the
uniform convergence estimates for multigrid applied to symmetric problems.

We start by stating a result from (ref. 6) estimating the rate of convergence for the multigrid algorithm applied

to the symmetric problem. Specifically, we replace A; by A; and Ry by R, in Definition MG. Set i = B.
From the earlier discussion, the error operator associated with this iteration applied to finding a solution for the

symmetric problem

Aju=Qsf
is given by E = E; where
(5.1) Be=(-TI-T)--(I-T)

We then have the following theorem.

Theorem 5.1 (ref. 6). Fork > 1, let Ry satisfy (C.1) and (C.2). Under the assumptions on the domain Q and
the coefficients of (2.1) given in Section 2, there exists a positive constant 6 < 1 not depending on J such that

A(EJ“:EJU) < 32‘4(“:") forallu € My oomon on cone

To analyze the multigrid alg;»riéhms using the srrrlrc;o;h;rr:o} Section 3, we use the perturbétion operator
Zy =Ty ~ T
We note that for any u,v € M;, for k > 1,
(5.2) A(Zyu,v) = D(u, T{v).

Indeed, by definition, A L .
A(Tiu,v) = (Tiu, ArPev)i = (Ae Py, RLAL Pl
= (AkPku,T,:v)k = A(Peu, Tyv)

= Ay, Tyv) = Ay, Tiv) + D(u, T}v).
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The equality (5.2) immediately follows.
To handle the case of k = 1, we have
(5.3) A(Z1u,v) = D((I - P\)u, Bv).

In fact, by definition, ) R N
A(Pyu,v) = A(Piu, Pyv)
= A(u, Pyv) — D(P,u, Pv)
= A(}S]u, v) + D((I - Pl)u, ﬁ]”)-

The following theorem provides an estimate for the multigrid algorithm when the smoothers of Section 3 are used.

Theorem 5.2. Let Ry = Ry and assume that (C.1)-(C.3) hold. Given ¢ > 0, there exists an hy > 0 such that for
hi < ho, . )
A(Eu,Eu) < 6%A(u,u)  forallu € Mj,

for § = § + c(hy + ¢). Here § is less than one (independently of J) and is given by Theorem 5.1.

Proof. For an arbitrary operator O : M; — Mj, let ||O||; denote its operator norm, i.e.,

A(Ou,v)
ol = i : .
1O = o erw72A(s, 07

Applying (2.4), (2.9) and (2.8) to (5.3) gives
A(Z1u,v)| < Cell(T = Pr)ull; [Ivll; < Cellull, Jloll -

This means that the operator norm of Z, is bounded by Ce. Since the operator norm of (I — B)) is less than or
equal to one, the triangle inequality implies that the operator norm of (I ~ P)) = (I — P, - Z,) is bounded by
1+ Ce.

For k > 1, applying (2.4), (C.3), Remark 3.1, and (3.2) to (5.2) gives

|A(Zku, v)] < chy ||ull, A(Trv, v)'/?
< ch lull; Jlvll;

i.e., the operator norm of Z; is bounded by chs. Since, by (3.2), the operator norm of (I —-’.f‘k) is less than or equal
to one, the triangle inequality implies that the operator norm of (I — T}) = (I — Ti — Zy) is less than or equal to
1+ chy. Hence, it follows that

k
B4 < 1+ Ce)JJ(1+chi) < C.

i=2
It is immediate from the definitions that
(5.4) Ei— Ey = (Ex-1 — Ex1)(I = T3) - Ev1 2k
By (3.2) and the above estimates, for k > 1,

1Ex — Ex]ly < |1 Becy = Eecallg)|I = Tilly + || Becrl 1)l 214

(5.5) X
< IBk-1 = Ex-1|5 + Chs.
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Repetitively applying (5.5) and using
|By — Erlly = |21]l5 < Ce

gives that
J

\Es - Esll3 S Ce+C D hi < el +e).
k=2

The theorem follows from the triangle inequality and Theorem 5.1.

Remark 5.1. Note that ¢ can be made arbitrarily small by taking h; small enough. Consequently, Theorem 5.2
shows that the multigrid iteration converges with a rate which is independent of J provided that the coarse grid is
fine enough. The coarse grid mesh size can also be taken to be independent of J.

We next consider the case of Example 4. For this example, we consider first the multigrid algorithm for the
symmetric problem which uses

(5.6) Rk = X;zfik

as a smoother. From the discussion in Section 2, the iteration (2.12) with Ry (given by (5.6)) and Ay replacing,
respectively, R; and A in Definition MG, gives rise to the error operator given by (5.1) where, as above, for

k > 1, Ty = RiAyP:. The smoother (5.6) does not satisfy (C.1) and so the first step in the analysis of the

nonsymmetric and/or indefinite example is to provide a uniform estimate for E; given by (5.1). Such an estimate
is provided in the following theorem. Its proof is given in the appendix.

Theorem 5.3. Let E; be given by (5.1) where T = Ry AP, and Ry, is defined by (5.6). Then,
A(Eyu, Eyu) < 82 A(u,u) for allu € My.

Here & is less that one and independent of J.
We can now prove the convergence estimate for multigrid applied to (2.1) using the smoother of Example 4.

Theorem 5.4. Let R, be defined by Example 4. Given € > 0, there exists an ho > 0 such that for hy < hg,
A(Eu, Eu) < 62 A(u, u) for all u € My,

for § = & + ¢(h1 +¢). Here é is less than one (independently of J) and is given by Theorem 5.3.

Proof. For k > 1, we consider the perturbation operator

Zy =T — Tk = X;z(AiAkPk - Azpk)

Clearly,
(5.7 Zy = N2 AL(AkPx — AcP) + (45 - AR ARy
As in (5.2),

XEIA((AkPk - fikﬁk)u, v) = X;lD(u, fikpkv)

from which it follows using (2.4) that ) o
A (AxPe — APl < cha

A similar argument shows that } o
WA (AL — AR)Pil| 3 < ch.
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It is not difficult to show that ~
|4kl 5 < CA.

Combining the above estimates with (5.7) gives
12l 5 < IR AN AR (AxPe — Akl
+ I3 (Af — A) Pl lINF Ak Bell; < chae

The remainder of the proof is exactly the same as that of Theorem 5.2. This completes the proof of the theorem.

We next consider the case of Example 5. We use perturbation from the multigrid algorithm for A which uses
the smoother Ry defined by Example 2. Theorem 5.1 provides a uniform estimate for the operator norm of Ej.
Theorem 5.5. Let Ry be defined by Example 5. Given ¢ > 0, there exists an hg > 0 such that for h, < hg,

A(BEu, Eu) < 682A(u, u) for all uw € My,

for § = & + c(hy + €). Here 8 is less than one (independently of J) and is given by Theorem 5.1 applied to Ry
defined in Example 2.

Proof. For this case, the perturbation operator Z; is given by

I
Zy =7 (Pi-B)).

i=1
As in (5.3), ‘
A((P; - PYu,v) = D((I - Pi)u, Piv).
Applying (2.4), (3.6) and (4.2) gives
(5.8) A((P{ ~ Pyu,v) < chy [lull o 0]l 0
and hence

4
A(Zku,v) < chie Y llully gt vl -

i=1

Using the limited overlap properties of the domains, i gives
1Zk]l5 < cha.

The remainder of the proof of the theorem is exactly the same as that given in the proof of Theorem 5.2.

We finally (Eonsider the case of Example 6. We use perturbation from the multigrid algorithm for A whic13 uses
the smoother Ry defined by Example 3. Theorem 5.1 provides a uniform estimate for the operator norm of Ej.

Theorem 5.6. Let R; be defined by Example 6. Given ¢ > 0, there exists an hg > 0 such that for h; < hg,
A(Eu, Eu) < 82A(u,u) for all u € My,

for § = & + c(hy + €). Here & is less than one (independently of J) and is given by Theorem 5.1 applied with Ry
defined as in Example 3.

Proof. The perturbation operator for this example is

Z,=T.-T.=&-&
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where & is given by (3.8) and . )
&=(I-P)I=-F"-(I-F)

with & = I. As in (5.4),

a

& -&= (I - Is,:l)(é,'_1 - 8,-_1) - (}3,: - P:)gi_l.
Since the last two terms are orthogonal with respect to ﬁ(-, -) we have that
7||(3i — &)l = I = B))(Eiz1 = Ea)ully + 1B — PO)Eimrull}:
Because of (5.8) and the factitrh_at the operator norm of (7 — P}) is bounded by one, it follows that

(& = Eulll, < (81 = En)ully + CRE|IEi-rulll; -

Summing over 1, smceéo = & = I, we obtain
7 ¢
5 2
(5.9) (6 — &)ull} < CRE Y Ei-ullia; -
i=1

We shall show that

¢ :
: p 2
(5.10) Y llEi-aulligg < Cllull.

i=1

By the arithmetic-geometric mean inequality, the definition &; and the limited interaction property (see (3.10) and
above) it follows that

¢ ¢ ¢
2 2 2
E ||£i—l“”1,ng <2 Z ”"”1,9;', + 22 [lu— &'—xulh,n;
i=1 i=1 i=1

2

i-1
S PlEn-1u
m=1

[4
<Cllul+2)
(5.11) = L

o
<c(lully+ 3 S IPrEnrullfag )

m=1 =1

¢
< C(llullf+ Y I|1PPEm-1ull})-
m:]ﬂ

In order to estimate the last term on the right of (5.11) we write

[1PrEm-1ully = AP En-14, P{"Em-1u)
A

((Em-1 = Em)t (Em-1 — Em)u)

(5.12) = A((Em-1 = En), (Emet + Em)u) — 2A(P Em_14, Emu)
= A(Em_ 11, Em-14) — A(Emt, Emu)
= 2A(PEm_1u, (I = PM)Em-1)u).
Now by (5.8)
(5.13) APP En 16, (I = PP)Em-14) = A(PlEm-1u, (P = P")em-1)u)
' < Chll Py Em-1ully |Em-1ull, op -
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Hence, combining (5.12) and (5.13), we have
Pl Em-1ull} < ClA(Em-14, Em-11) — A(Emt, Emw)] + CBE [|En1ull} op -

Summing over m we conclude that

4 (4
DB En-rull} < Cllull + CRE Y llem-sulligp -

m=1 m=1

This together with (5.11) yields (5.10) when A, is small enough. Finally, we obtain from (5.10) and (5.9) that for
k>1,
12|14 < Chu.

The remainder of the proof of this theorem is the same as that of Theorem 5.2.

Remark 5.2. The same analysis could be used for successive overrelaxation type iteration. In that case,
& =(I-pPYI~pP")---(I - BP;)

where 3 € (0,2) is the relaxation parameter.

Remark 5.3. Many extensions and generalizations of the techniques given above are possible. These techniques
lead to uniform estimates for multigrid iteration methods for solving nonsymmetric and/or indefinite problems for
the following applications.

(1) Approximations using higher order nodal finite element spaces.

(2) Three dimensional problems.

(3) Problems with discontinuous coefficients as discussed in (ref. 6).

(4) More general boundary conditions.

(5) Problems with local mesh refinement as described in (ref. 11).

(6) Finite element approximation of problems on domains with nonpolygonal boundaries as discussed in
(zef. 6).

In addition, the perturbation analysis given above can be combined with results for additive multilevel
algorithms, for example, Theorem 3.1 of (ref. 6). This leads to new estimates for additive multilevel
preconditioning iterations applied to indefinite and nonsymmetric problems. Provided that the coarse grid is
sufficiently fine, the operator

J
P= E T
k=1

has a uniformly (independent of J) positive definite symmetric part with respect to the inner product A(:,-) and
has a uniformly bounded operator norm. These results extend to all of the applications discussed in Remark 5.3.

6. APPENDIX

We provide a proof of Theorem 5.3 in this appendix. We will apply the analysis given in the proof of Theorem
3.2 of (ref. 6). Note that we cannot directly apply Theorem 3.2 of (ref. 6) since the smoother Ry = X;%ik does
not satisfy (C.1). We note, however, that Theorem 5.3 will follow from the proof of Theorem 3.2 of (ref. 6) if we
show that (C.2) holds as well as (3.5) and (3.6) of (ref. 6) with T replaced by Ti defined above. Clearly, (C.2)
holds with = 1. The remaining two inequalities corresponding to (3.5) and (3.6) of (ref. 6) are

(6.1) A(Tiv,v) < (Cn*"VA(v,v) forallve M, I<k
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and

J
(6.2) A(v,v) < C’ZA(Tkv,v) for all v € M;.
k=1

Here 7 is less than one and independent of k and [.

From the definition of A;, we obviously have
A(Twv,v) < A A(Av,v) = A(Tiv,v).
As in (ref. ?), we have set T = A7 ' Ai. Inequality (6.1) follows from Lemma 4.2 of (ref. 7).

Inequality (6.2) can be rewritten,

. . AT
(6.3) Au,u) < C(A(Plu, u) + 347 ”AkPkunl).
k=2
To prove this we proceed as follows. Let u € My and @ = 0. Then

J
A(u,u) =) Ay, (Qk — Q-1)u)

k=1
o J L N2/
(6.4) < (A(Plu,u)+2)\;2 ”Akpkuul) (A(Qlu,Qlu)
k=2
S 1/2
+ 3 MA@k — Qe-1)u, (Qk — Qk—l)u)k)
k=2
Now, for k > 1,

(AH(Qk — Qi-1)u, (Qk — Qr-1)uk
(A7 (Qr — Qu-1)u, )}

= sup

$EMy (¢’ ¢)k
= sup (9= Qe-1)u, (Cgk — Q)i
YEMi Iy

By well known approximation properties,

(Qr — Qr-)¥, (Qk — Qee)¥)? < CIHQk — Qi-1)¥ll < Chic|l9l -

Combining the above estimates gives

J
A(Quu, Quu) + 3 R (A (Qk — Qu-1)u, (Qk — Qe1)ulk

k=2
6.5 . I _
(65) < (4@ Qu) + M@ - Qi)
k=2
< C’A(u, u).

The last inequality of (6.5) is (4.5) of (ref. 7) and also can be found in (ref. 7). Combining (6.4) and (6.5) proves
(6.3) and hence completes the proof of the theorem.
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A MULTILEVEL COST-SPACE APPROACH TO SOLVING _ ;
THE BALANCED LONG TRANSPORTATION PROBLEM~
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SUMMARY

We develop a multilevel scheme for solving the balanced long transportation problem, that is,
given a set {cx;} of shipping costs from a set of M supply nodes Sy to a set of N demand nodes D;,
we seek to find a set of flows, {zx;}, that minimizes the total costy M, E?’;l Txjckj. We require that
the problem be balanced, that is, the total demand must equal the total supply. Solution
techniques for this problem are well known from optimization and linear programming. We examine
this problem, however, in order to develop principles that can then be applied to more intractible
problems of optimization.

We develop a multigrid scheme for solving the problem, defining the grids, relaxation, and
intergrid operators. Numerical experimentation shows that this line of research may prove fruitful.
Further research directions are suggested.

INTRODUCTION

The transportation problem is the simplest of network flow problems. It is posed on a bipartite
graph, consisting of a set of M supply nodes, a set of N demand nodes, and a set of arcs connecting
them. Each supply node S; has a fixed amount s; of a commodity which it can provide. Each
demand node D; has a fixed requirement d; for that commodity, and for each arc (i, j) connecting
supply node S; to demand node D, there is an associated cost per unit flow cij. When the total
supply equals the total demand the problem is balanced. When M << N, the problem is referred to
as a long transportation problem. Denoting the flow on arc (¢,7) by z;;, the transportation problem

"This work was supported in part by Naval Postgraduate School Research Council, Grant No. MAQGO0-MA999/4476-
4479
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can be expressed

M N N M
Minimize »_ Y c;;x:; subject to: S i = i Sz =d;, zi; 20
i=1 j=1 i=1 i=1

Let b denote an (M + N)-vector whose first M entries are the available supplies s; at nodes S,
through Sy, and whose last N entries are (negatives of) the required demands d; at demand nodes
D, through Dy. Let K be the pumber of arcs in the problem. Throughout this work we shall
assume that every supply node is connected to every demand node, so that K = M N. Let the
K-vector z be composed of the flow on the arcs from the M supply-nodes to the N demand nodes
in some order, and the K-vector c be the cost of shipping on those arcs in the same order. We
denote by A the incidence matrix of the graph, so that A has as many rows as there are nodes in
the problem, M + N, and as many columns as there are arcs (M N). Each column of A is
associated with one arc of the problem, and they are arranged in an order that matches the order of
the vectors ¢ and z. Each column has exactly two non-zero entries: a +1 in the row corresponding
to the tail (supply) node S; of the arc, and a —1in the row corresponding to the head (demand)
node D;. Each row of A is associated with one of the constraints of the problem [1]. Then the

problem may be written in matrix notation as

Minimize: c¢Tz
Subject to: Az =b,
z > 0.

A simple example is presented in Figure 1. In the example, there are four supply nodes, having
12, 15, 10, and 7 units of the commodity to deliver. There are three demand nodes, requiring 13,
20, and 11 units of the commodity. We seek to find a flow vector

T
(5!311 Ti2 T13 Ty Tz T2z T3 T3z T3z T4 T4z 1‘43)
given that the vector of costs, written in corresponding order, is
T
(215643174234).

The algebraic description of this problem is to find z such that ¢Tz is minimized, subject to the
system of constraints

(3»‘11\
T2
/1 1 1 0 0 0 0 0 0 0 O o\ 13 [ 12 )
o o 0 1 1 1 0 0 0 0 0 O T 15
o 0 0 0 0 0 1 1 1 0 0 O T22 10
o o 0 0 0O 0 0 0 0 1 1 1 Rl - 7
1 0 0 -1 0 0 -1 0 0 -1 0 O Ta ~13
0 -1 0 0 -1 0 0 -1 0 0 -1 0 T3z ~20
\o 0o -1 0 0 -1 0 0 -1 0 0 -1 )| \ —11J
T41
Z42
72
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Figure 1: A simple example of a transportation problem

Very little work has been done on multigrid methods for discrete optimization problems.
Significant studies to date are [2], [3], [4], and [5]. The traditional optimization algorithm which
most closely resembles a multilevel algorithm is aggregation/disaggregation [6], [7], and [8], in
which nodes are aggregated in a logical way in order to reduce the size of the problem, and the
solution to the smaller problem is disaggregated to provide an initial estimate for the solution to
the original problem. The most successful work to date, and the work that inspired this study, is
that of Kaminsky [4].

COST-SPACE

In [4] it is required that the demand nodes occupy a physical location in space, and that a
relationship exist between transportation costs and distances. This is done so that the coarsening
step may be performed by aggregating together demand nodes that are physically near one another.
For this to make sense, it is necessary that shipment to each of the aggregated demand nodes
involve a similar cost, which naturally occurs if the shipping cost is a function of distance. For
many applications this makes perfect sense; the cost of shipping a commodity is often directly
linked to the distance the commodity must be shipped. This restriction is overly limiting for other
types of problems, however. For example, the manpower assignment problem, in which a specified
number of jobs must be assigned a given set of workers, can be formulated as a transportation
problem. There is no distance involved in such a problem, and cost of assignment is related to other
factors, such as the cost of training an individual for a specific task.

In order to address problems that have no geometrical dependence of cost on distance, we
employ a change of coordinate systems from physical space to a space we describe as cost space.
For the M x N problem, cost space is the M-dimensional space in which each of the coordinate
axes is the cost of shipping from one of M supply nodes. Each of the N demand nodes is placed in
cost space at the point whose coordinates are the unit costs of shipping from the supply nodes to it.
For example, the three demand nodes in Figure 1 would be placed in a four-dimensional cost space,
and would have the coordinates D; = (2,6,1,2), D, = (1,4,7,3), and D; = (5,3,4,4). This change
of coordinate systems means shipping cost becomes the metric of the problem, so that two demand
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nodes are “near” each other only if the shipping costs are similar, and the aggregation of
neighboring demand nodes automatically ensures the similarity of their costs.

Posed in cost space, the dimensionality of the problem equals the number of supply nodes. In
traditional multigrid methods, one typically uses grids that are tensor products of one-dimensional
grids, each having a cardinality of gridpoints that is a power of two. In the cost space approach this
would lead to a very rapid growth in the size of the problem; for this reason the cost space
approach can be applied only to problems with a relatively small number of supply nodes. This is
one reason for restricting our attention to the long transportation problem.

Reduced dimension cost space

If at least one supply node is connected to all demand nodes (and in our work we assume this to
be true of all supply nodes) then we can transform the M x N transportation to an equivalent
(M — 1) x N problem, which we call the reduced dimension problem. Since we are dealing with the
long problem, the transformed problem is somewhat simpler and less expensive to solve. The
transformation is accomplished as follows. Suppose that supply node S, is connected to all demand
nodes. Then for each demand node D;, we subtract c;;, the cost of shipping from supply node S; to
Dj, from all of the shipping costs into demand node D;. That is, we form an auxilliary cost vector
&j = ¢ij — ci;- The result is that for supply node S, all the demand nodes map to the origin in cost
space. Effectively S; has been removed from the problem, leaving an (M — 1) x N problem to be
solved. For example, if we use the cost of shipping from S, on the example in Figure 1, the
transformed cost vector becomes

a:(—4—32000—531—4—13)T.

We can show that while the objective function value is different for the new problem, a solution for
one is equivalent to a solution for the other.

Theorem 1 Let the M x N balanced long transportation problem be represented by a bipartite
graph G, and suppose thal supply node Sy is connected to all demand nodes. Let b be the (M +N)
length column vector whose first M enlries are the supplies at the supply nodes and whose
remaining N entries are the negatives of the demands at the demand nodcs. Let A be the adjacency
matriz of the graph G; that is, for each arc (3,) we have A, (i — 1N +j)=1and

AM +j,(i —1)N +j) = —1. Let c be the (M + N) length vector whose k = (i — 1)N + j element is
the cost c;; of shipping from node S; to node D; along arc (i,j). Define € lo be the vector whose k™
entry is 6 = ¢ij — Clj- Then ™ 15 a solution to the problem

Minimize: c¢Tx
Subject to: Az = b,

z2>0,
if and only if it is a solution to the problem:
Minimize: ¢’z

Subject to: Az =b,
z2>0.



Proof:
M N
kiTk; = O, 2 (Ckj — C1j)Tk;

k=1 j=1
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CkjTkj — Z Z%’xkj

I
Mz
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k=1 j=1 k=1 j=1
N M N
= CTJJ - chj Z Tr; = CTIIJ - chjdj,
j= k=1 j=1
M
since Y  zx; = d; in the balanced problem. But E;V:l cijd; does not depend on z, and therefore
k=1
¢ Tz achieves its extreme values precisely when c”z does. [

This transformation of the costs to reduced-dimension space maps all costs of shipping from S5;
to the origin in cost space. As will be shown in the next section, our algorithm requires that the
demand nodes be sorted once according to the cost of shipping. Since sorting is a fairly expensive
operation, the savings generated by reducing the dimension of the problem are tangible. Once the
transformation to reduced-dimension cost-space has been performed, the resulting problem may be
solved with no further consideration of the transformation. Therefore, in the remainder of this work
it is assumed that when an M X N problem is to be solved, it may be the reduced dimension
version of a problem that was originally (M +1) X N.

A MULTIGRID APPROACH TO THE TRANSPORTATION PROBLEM

Following traditional multigrid design approaches, we develop the necessary tools to devise a
multigrid V-cycle, which we will combine with a nested iteration to create an FMG algorithm. In
particular, it is necessary to devise restriction and prolongation methods, some form of local
relaxation, and to weave them into an algorithm.

Restriction

To devise a restriction algorithm, it is first necessary to define a coarse grid. We use an approach
in which each gridpoint on the coarse grid is a demand node for the coarse grid problem, and
represents a pair of demand nodes on the fine grid. This is accomplished as follows. The demand
nodes are first sorted by increasing cost of shipping from Si, and divided into two groups about the
median of the sorted cost. This procedure results in two groups of demand nodes, one with a lower
cost of shipping from i, and one for which shipping from S; is more expensive. Each of these
groups are then sorted according to increasing cost of shipping from S, and divided into two groups
about the median cost. This results in four groups, one for which shipping is expensive from both
supply nodes, one group for which shipping is inexpensive from both supply nodes, one group for
which shipping is expensive from S, and inexpensive from S;, and one group where shipping is
expensive from S; and inexpensive from 5.
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Figure 2: A simple example of a coarsening process for the f/’(znqur;fation problem

If there are more than two supply nodes in the problem, this process is contmued The four
groups are each sorted by cost of shipping from supply node S, then divided into smaller groups if
necessary and sorted again, according to cost from Sy, etc. If the groups contain more than two
‘nodes after the nodes have been sorted according to cost from all supply nodes, the sorting process
begins again with cost from S; on each of the groups. Eventually, the nodes will be sorted into
pairs that have similar shipping costs from all supply nodes. Each of these pairs of demand nodes is
‘then rgglaced with a single coarse grld demand node, the collection of which constitutes the first
coarse grid.- R o o - =

Further coarsemng is accomphshed by repeatmg the procedure descrlbed above on the coarse

grids to produce still coarser grids. Figure 2 shows a simple example of the coarsening process. If

the number of points on the original grid is a power of two, then in the limit a coarsest grid would
consist of a single demand node. As in traditional multigrid methods, once the hierarchy of grids is
established it is stored, so that the sorting process need never be repeated.

Three quantities must be restricted when aggregating a pair of fine grid demand nodes into a
coarse grid demand node: the demands, flows, and costs. Let D?* be the coarse grid node
representing the fine grid nodes D% and D}. It seems natural that the demands can be restricted
simply by summing the demands of the two fine grid nodes to produce the demand at the ctoarse
grid node, d?* = I?*[d% d}] = d* + d}. Similarly, the flow 3%, from any supply node S; into the
coarse demand node should be the sum of the flows from Si to each of the fine grid demand nodes
that make up the coarse grid node, =y, = Itt[z};,z})] = =}, + 2}

Restricting the cost of shipment is more complicated, and no obvious “best” approach is
apparent. However several methods can be considered. The simplest of these is to define the coarse
cost 2* to be the minimum of the fine costs, i.e., 2k = I (¢, ck] = min(c};, c};). Other simple
schemes are readily devised, such as using the maxirnum of the fine costs, or a weighted average of
the fine grid costs. We use a weighted average of the fine grid costs. Again, there are several
possible weightings, each having valid arguments for and against it. Three schemes were tested in

66




some depth, equal weighting, flow weighting, and demand weighting:

C ot h h[h R ck; T ki
Equal weighting: ah = I?z. [ckj;ckt] 7
1 dicl; + dj ek
Demand weighting: cir, = IP[ek;,ch] = ""J‘th a0
jta
kR h h .k
Ty.Cr: +TpC
o A _  phLh R ki Tk ki kt
Flow weighting: ko= I [ckjackl] h J+ Rt
Trj T Ty

With flow weighting, provision must be made for the case where there is zero flow on both arcs. In
such a case flow weighting can be replaced with either demand weighting or equal weighting. In
general, we found that demand weighting most consistently gave the best results, and adopted it for
our algorithm.

Prolongation, or Interpolation

Suppose that the problem has been solved on the coarse grid 22*. We seek a method of
prolongation, that is, a way in which the coarse grid solution can be interpolated onto the fine grid.
In the coarse grid solution there is some quantity of flow z2" giving the flow from each supply node
Sk to each coarse grid demand node d2*. Each such demand node on the coarse grid, however,
represents the aggregation of two demand nodes on the fine grid, d? and d?. An interpolation of the
coarse grid solution, therefore, can be constructed by treating the M flows z2* z2* ... z% . into
the coarse grid demand node d2?, as supplies. Interpolation, then, consists of solving for each coarse
grid demand node, the M X 2 transportation problem with those supply values, the two demand
nodes d? and d}, and the shipping costs ¢, k=1,2,..., M. (Figure 4 shows schematically how
the interpolation process appears.)

Having defined the interpolation process as finding the solutions to many small transportation
problems, we turn our attention to the mechanism for finding these solutions. A method for solving
such M x 2 problems is described below. The method is a special case of Vogel’s approximation

method.
Algorithm 1 Solving the M x 2 Balanced Transportation Problem

1. For each supply node Sy. find the difference in cost of shipping 6 = (c’,;j —chy| to the two fine
grid demand nodes d;‘ and dff.

2. Rank the M supply nodes in decreasing order of these cost differentials, so tha
b >262>2...26u.

3. Repeat until all supply nodes are removed from the problem:

(a) Denote the supply nodc al the top of the ordered list as the “current”™ supply node, and
allocate flow to the demand node with the lower cost of shipment. that is, along the least
crpensive arc, thus determining a “current”™ demand node. (In the evenl that more than
one node has the largest differential cost, select from among them the node with the
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Figure 3: Example problem illustrating the solution method for an M X 2 problem.

smallest cost along one of its two arcs). Allocate flow along this arc until either the
demand at the current demand node is satisfied or until the supply at the current supply
node is exhausted.

(b) If the supply at the current supply node is exhausted, remove that supply node from the
problem.

(c) If the demand at the current demand node is satisfied, remove that demand node from
~ the problem, allocate the remaining supply from the current supply node to the remaining
dem(md node, and remove the current supply node from the problem.

4. Stop

As an example of this procedure consider the five by two problem shown in Figure 3. The five
supply nodes S, S, . .-, S5 have, respectively, 15, 12, 16, 18 and 14 units of the commodity to.
deliver. The demands of the two demand nodes D, and D, are 30 and 45. Let 6 =(4846 1)T be
the vector whose i** entry is the dlfference 6; between shlppmg cost from supply node S; to the two
demand nodes (the costs themselves are given for each arc in the figure). Sorting from largest to
smallest value of §;, the supply nodes are ordered (S, Sy, 51, 53, 55). Note that, while the = - - -~
differences for nodes S; and S; are the same, the cost c;; along the arc from node 51 to node Dz is
less expensive than elther of the arcs 1n01dent from node S3. Starting with node Sz, then as much
flow as possible is sent along the least expensive arc. In this case, that is the arc to demand node
D,. Since this demand exceeds the available supply from node S, all of the flow from node S, goes
along this arc. Similarly, node Sy and then node S send all of their supply to node D,. When node
S; has sent 12 units of flow along its least expensive arc, the demand at node D, is completely met.
Thus node S; sends its remaining units to node D,, as does node Ss5. Although the arc from node
Ss to D is less expensive, the demand at D, has been met from supply nodes where the difference
in arc costs is greater.

We can show now that because of the special structure of the M x 2 problem, i.e., the fact that

there are only two demand nodes, this procedure produces an optimal solution.
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Theorem 2 Let x be the vecior of flows assigned for the M X 2 problcm using the algorithm given
above. Then x is an optimal solution to the M x 2 problem.

Proof: Suppose that z is not an optimal solution. Then there exists a low z* # z such that
z* = cTx* is optimal. We will show that if = is determined by the algorithm given above and
z = cTz, then z* > z, contradicting the assumption that z is not an optimal solution. Letting
0k = |ck1 — cxo| for each k = 1,2, m..., M, assume the supply nodes have been ordered in
decreasing order of §; so that §; > 8, > ... > 8. Let @ be the first supply node for which z* differs
from z, and without loss of generality, assume that ¢;; < ¢;2. Let A = z;; — ;. We first observe
five useful facts:

1. Since the problem is balanced, total flow out of Sy equals the supply, so that
Sk = Tkl + Txa = Ty + Ty, for every k, implying zx — 23, = %y — Zio.

2. In particular, since A = z;; — z7; then —A =z}, — z;5.
3. Since the problem is balanced, total flow into D; equals demand, so that d; = Zﬁl z; and
d, = Z;‘il T),. Subtracting these two relations, and noting that z and z* do not differ for

i=12,...,i—1, we find that 0 = z;; — zj; + Z?’iiﬂ(le — z};), implying that
A= Z;l:iﬂ(m;l - Tj1)-

4. Using similar reasoning, we obtain —A = Zﬁi (TG — T52).

5. By construction, since ¢;; < ¢;2, then z;; is as large as it can possibly be, so that if z and z*
differ for node 7 then z;; > z7;, implying that A > 0.

Next, we observe that

*

22 = z42r—2z
= z+cTz - cTz

M M
= z+ Z (x;ICﬂ + .’17;26_,'2) - Z(lec_,‘l + l’jojz),
=i

j=i

where we have used the fact that z* and z do not differ for j < i. Separating the flows from supply
node %, we can write

M M
7 = z+ (zh—za)ea + (@ —za)er + ), (x;l - :c,-l) i+ Y, (3;2 - a:jg) Cj2
j=it+l j=i+l
M
= z—Aci+ Acja + Z (-”4‘}1 _le) (ci1 = ¢j2)
j=i+1
where we have used the fact that zx; — z};, = 7}, — 7k for all k. Recalling that 8 = |cx1 — cral,

and that since ¢;; < ¢;; then §; = ¢;; — ¢;9, we observe that

M
Fa >z + A(S, + Z (.’E;l —11]'1) (-‘-5])

j=i+1
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Figure 4:
An illustration of interpolation by local optimization. The flows in the 3 X 2 coarse grid problem are
the supplies for the two 3 x 2 local problems. The combination of the flows solving those two local
problems makes up the interpolated solution to the 3 X 4 fine grid problem.

Since the nodes are ordered in decreasing order of &, we know that —6; < —6; for all j > ¢, and
therefore
M
z" >z + Aé,, — 5,’ Z (:1:;1—:1:]1)

j=i+1
Finally, recalling that A = Z;”:i (@ — z;1), we obtain
zr > z+ Aé, - &,A

Therefore 2* > z, contradicting the assumption that z is not an optimal solution.

Relaxation

Suppose that we have solved the coarse grid problem, and have interpolated that solution by
solving an M x 2 transportation problem for each coarse grid demand node in order to pass the
local solution to the two fine grid demand nodes represented by each coarse grid node. The supplies
for this local M x 2 problem are the coarse grid flows. Figure 4 displays a schematic showing how
the interpolation process appears graphically. - ' T SRR T memmoo

It is important to note that while each of the local M x 2 problems has been solved optimally,
there is no reason to expect that the total set of fine grid flows thus assigned will be optimal. For
this reason, it is essential that we devise some kind of “relaxation” scheme, whose task is to smooth
or correct errors left by the interpolation scheme.
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When two M x 2 subproblem solutions are viewed from a more global perspective, as a solution
to an M x 4 problem (or as a portion of a solution to a still larger problem), this combination of
locally optimized solutions may be flawed, in that too many arcs may have flow on them. This is
because the minimum value of the objective function for a balanced transportation problem can
always be obtained with a flow regime having flow on at most M + N — 1 arcs. This simply reflects
the fact from linear programming theory that an extreme point solution has flow on M + N — 1
arcs, if the solution is non-degenerate [9], and that an optimal solution can always be found at one
of the extreme points (a degenerate solution is one in which distinct subsets of demand nodes are
supplied by distinct subsets of supply nodes). If the solution is degenerate, there will be fewer arcs
with flow on them. For example, if N > M, then in the extreme degenerate case each supply node
provides flow to a disjoint subset of the demand nodes. This means that each demand node has
exactly one arc with flow on to it, so that precisely N arcs have flow. If N < M, then the extreme
degenerate case is when each supply node has exactly one arc with flow, giving M such arcs.

When interpolating from Q?* to * each coarse demand node generates two fine grid demand
nodes and the optimal solution to the M x 2 subproblem has M + 1 arcs with flow, in the
non-degenerate case. If the subproblem solution is degenerate, then M arcs have flow. If there are
N/2 demand nodes on Q%" then after the interpolation the collection of subproblem solutions
(viewed as the initial feasible solution to the 2" problem) will have flow on at least NM/2 and at
most (NM + N)/2 arcs, depending on how many subproblems are degenerate.

Thus, whenever NM/2 is greater than M + N — 1, (which is true for any long transportation
problem where M > 2 and N > 3), the collection of local solutions has too many arcs with flow to
be an extreme point solution to the fine grid problem, and is probably less than optimal. The local
relaxation scheme developed here is designed to reduce the number of arcs with flow for the fine
grid problem, which will generally have the effect of moving the global solution toward an optimal
solution.

The mechanism by which we do this is cycle removal. Since there are M + N — 1 arcs in a
spanning tree over M + N nodes, and the addition of a single arc (or more) to a tree results in a
graph with at least one cycle, then for most problems, the interpolation process will introduce
cycles. We note that while this has been developed in the setting of the entire collection of local
solutions, it is also true in a pairwise sense. That is, each of two M x 2 local solutions will have
either M + 1 or M arcs with flow. Viewing the pair as a solution to an M x 4 problem, we observe
that the combined solution will have at least 2M arcs with flow. If M > 2 this equals or exceeds
the M + 3 arcs with flow that would be present in an extreme point solution.

To illustrate this, consider the possibilities when two 3 x 2 local solutions are combined into a
3 x 4 solution, as shown in Figure 5. In a), two non-degenerate solutions are combined. Numbering
the demand nodes of the combined problem clockwise from the upper left and the supply nodes
from top to bottom, we observe that there are three cycles in the combined solution
(51, D3, S2, D1, $1), (S1, D3, S3, D4, S5, D1,S1), and (S3, D3, S3, Dy, S;). In b), a degenerate solution
is combined with a non-degenerate solution, yielding a combined solution with one cycle. In c), two
degenerate solutions are combined into a solution that has no cycles, while in d), two degenerate
solutions are combined into a solution that has one cycle.

A reasonable candidate for a local relaxation process is to adjust the flow in the initial solution
produced by the interpolation process, so that cycles are removed and the objective function is
reduced. The effect of this procedure is to adjust the locally optimal flows which result from
interpolation so that they are more nearly optimal in the global problem.
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Figure 5: Combining two 3 x 2 solutions into a 3 x 4 .srol"u,‘t'z—foﬁ. Four typical cascs are shown.”

Cyéles are detected in theaﬁgbnthm using a depth ﬁrst search (DFS). The DFS proceeds as
follows: - S

Algorithm 2 Depth Firs! Scarch
1.

2.

Initialize all nodes with DFS number 0, to indicate t)zey have not yet been visited. -
Start at any node. A.ssz'gﬁ this node a DFS number of 1, and define node 0 to be the
predecessor of this node.. : o

If any node adjacent lo the current node has been previously visited, and has a DFS number
lower than the predeccssor of the current node, then the path from that node through the

~current node and back is (zcycIFStopDFS q;rrzfiwcal'l' the cycle removal routine.

If no adjacent nodes have lower DFS numbers, then look for any adjacent nodes which have
not been visited. If there are any unvisited adjacent nodes, identify the current node as the
predecessor of the unvisited node, make the unvisited node the current node. and assign the
current node a DFS nwmber equal to the DFS number of its predecessor plus 1.

If there are no unvisited nodes adjacent to the c;urrenf node, make the predecessor of the -

current node the curvent node. If the current node is node 0, stop. Otherwise, return to step 3.

Once a cycle is detected, a cycle removal algorithm is used to adjust the flows. The technique is
illustrated in Figure 6. The effect of a unit increase in flow in the clockwise direction around the

cycle is determined by adding together the costs of the arcs whose flow increases and subtracting
the cost of the arcs whose flow decreases. The change in objective function value per unit change in

flow in one direction will be the negative of the change in the opposite direction. An example is
shown in Figure 6, with the initial flow regime on the left, and the flow after cycle removal on the
right. The supplies and demands are shown in the boxes and circles, while the numbers in
parentheses above each arc give the cost and flow for that arc. For example, the cost ¢34 is 5, while
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Figure 6: An initial solution with a cycle (left), and the improved flow regime after cycle removal
(right). The numbers in parentheses above each arc are (¢ij, Tij).

there is initially 3 units of flow on that arc. A unit increase in flow clockwise around the cycle
(beginning at S;) will cause a change in the objective function value of 4 —6+3—-8+5—-6 = —4,
a net decrease. A unit increase in the counter-clockwise direction therefore yields 6, a net increase
in the objective function. Clearly, increasing the clockwise flow is profitable, so flow is increased in
this direction. Flow values will thus be increased for z13, 2 and x34, while flow is decreased for
To3, T3z, and z14. That is, flow is increased on the arcs in the cycle which point in the profitable
direction, and decreased on the the other arcs, until one of the decreasing arcs reaches zero flow. At
this point, the cycle has been removed, and the value of the objective function has been decreased.
In Figure 6, increasing the flow clockwise around the cycle by four units breaks the cycle by
eliminating flow along z14, and reduces the value of the objective function by 16 units. The
improved flow regime is shown on the right side of the figure.

This technique is used as a local relaxation method by applying it to pairs of subproblems. Two
subproblems which are adjacent in cost space are joined to form an M x 4 problem, which is
inspected for cycles. If any are found, they are removed and the problem is searched again.

Two different methods for applying this technique are investigated. The first, termed total
relaxation, is to join adjacent pairs of M x 2 problems, remove the cycles, then repeat the process
by joining adjacent M x 4 pairs, removing the cycles, then to join M x 8 problems, and so on, until
the global problem for the current level is inspected and certified to be cycle-free. This approach is,
however, extremely expensive. The second approach only employs a local relaxation, and is therfore
true to multigrid principles. In this case, only pairs of M x 2 are checked for cycles. The gain in
speed from using this second method is significant, while the decrease in accuracy is negligible (see
Table 1 in the next section).

EXPERIMENTAL RESULTS AND CONCLUSIONS

The algorithm employed in this work is an FMG algorithm, using demand-weighting as the
restriction method for computing costs, interpolation by local optimization, and local relaxation by
cycle removal. The results are displayed in Table 1. While the multilevel algorithm performed well
on problems with only two or three supply nodes, the results for the five supply node problem are
unsatisfactory. The table clearly indicates that relaxation by cycle removal is as effective when
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applied over a local area as when applied globally, and the computational effort required for local
relaxation is an order of magnitude smaller.

Problem Relaxation Run Time % Above
Size Method Optimality

2 x 1024 Total 1.210835 0.02 %

2 x 1024 Local 0.131437 0.02 %

3 x 1024 Total 1.15788 841 %
3 x 1024 Local 0.108765 8.41 %
5x 1024 Total 1.18411 58.4 %

5 x 1024 Local 0.106392 59.7 %

We note also that thls algorithm is not now competmve wrth the state of the art in network flow
optimization methods. No numerical data are available as a careful comparison has not been made,
however, some rough comparisons 1nd1cate that much remains to be done before a competrtlve
algorlthm could be obtained. PR :

The most srgnﬁicant contribution of ﬂie current research is the removal of the requlrement fora

physical 1nterpretatron of the problem, and the dependence on a relatronshlp between distance and
shlppmg “costs. By mapping the problem into cost-space, a multilevel approach can be applied to a
much broader class of problems. Of course, there is a limit to the number of supply nodes which
this approach can handle, due to the increasing dimensionality of the problem. However, for =
préﬁéﬁi?ﬁtﬁfeﬁxﬁbﬂy nodes, this approach can be helpful. We predict that further work will
yield the result that problems which have either a very small number of supply nodes, or a

' geometrical interpretation, can be solved to within an acceptable degree of optrmahty using a
multilevel approach. However, problems which do not meet either of these criteria probably cannot
be solved with currently known multilevel methods.

Fu_rtlrer Research

An algorithm analogous to the full approximation scheme (FAS) should be developed. In the
current work, we were unable to find an effective method of extracting a correction from the
solution on 92" and applying it to the approximation on Q" while still mamtalmng feas:blhty
Instead, we compute the solution on 2" and use mterpolatlon to replace the solution on Q*. Since

a direct analog to the residual in a PDE is unknown for in an optimization problem FAS is likely

the method of choice, however, the difficulty mentioned above must be overcome.

Another possibility for improving this algorithm is to begin the procedure by overlaying the
cost-space with a regular M-dimensional grid. The first step of the restriction process would then
be to map the demand nodes from their natural irregularly spaced positions in cost-space to the
regular grid points. Later, the final interpolation step would be to transfer from the regular gnd
back to the original demand points. This approach overcomes a shortcoming in the current -
~ algorithm, which aggregates demand nodes which are cl_gsest in relative distance in cost-space, -
regardless of the absolute distance between them. In using a regular grid, a demand node on QQ" :
would reflect only the demand at nodes a distance of 2h or less away from it. Another important
potential advantage is that the work on each coarser level is reduced by 2™, instead of by one half

as in the current research. If the regular grid approach proves worthwhile, then it could be
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extended to a fast adaptive composite (FAC) grid approach. In a network optimization setting, this
might be done by overlaying a fine grid on those regions of cost-space where the density of demand
nodes is high, and a coarser grid on the areas of low density. In this way, the flow to nodes which
are most similar to their nearest neighbors in cost-space will receive the benefit of a finer grid
spacing, while nodes which are naturally more distinct from their neighbors will only enter the
problem on the coarser levels.
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SUMMARY

The finite strip method is a semi-analytical finite element process which allows for a discrete
analysis of certain types of physical problems by discretizing the domain of the problem into finite
strips. This method decomposes a single large problem into m smaller independent subproblems
when m harmonic functions are employed, thus yielding natural parallelism at a very high level.
In this paper we address vectorization and parallelization strategies for the dynamic analysis of
simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in
memory access during the assemblage process. The vector and parallel implementations of this
method and the performance results of a test problem under scalar, vector, and vector-concurrent
execution modes on the Alliant FX/80 are also presented.

INTRODUCTION

More and more parallel computers have been developed and made available to the engineering
and scientific computing community in recent years. To take advantage of current and future
advanced multiprocessors, however, a great deal of efforts remain to be made in the search for effi-
cient and parallel implementations. In this paper we address both the coarse-grain and fine-grain
parallelism offered by the finite strip method (FSM) for the dynamic analysis of Mindlin plate
bending problems and present our vector and parallel implementations on multiprocessors with
vector processing capabilities. FSM, first developed in the context of thin plate bending analysis,
is a semi-analytical finite element process [6, 22]. This method allows for a discrete analysis of

*This work was supported by the U.S. Department of Energy under Grant No. DOE DE-FG02-85ER25001
while the authors were with the Center for Supercomputing Research and Development, University of Illinois at
Urbana-Champaign. o
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Figure 1: The coordinate system and sign convention.

certain types of physical problems by discretizing their domains into finite strips, involving an ap-
proximation of the true solution using a continuous harmonic series in one direction and piecewise
interpolation polynomials in the others. Because of the orthogonality properties of the harmonic
functions in the stiffness and mass matrix formulation, FSM decomposes a problem, when appli-
cable, into many smaller and independent subproblems which yields coarse-grain parallelism in an
extremely easy and natural way.

Although not as versatile as the finite element method, FSM has been applied to a wide range
of plate, folded plate, shell, and bridge deck problems [4, 6, 7, 8, 10, 18] because of its efficiency
and simplicity. The performance induced by the coarse-grain parallelism of this method in a
multiprocessing environment has been shown in [9] for the static analysis of Mindlin plate problems
and in [20] for groundwater modeling. In this paper, we report and compare the performance

' results of our implementation for the dynamic analysis of a simply-supported rectangular Mindlin
plate using scalar, vector, and vector-concurrent execution modes on an Alliant FX/80.

THE PROBLEM

In this section we describe briefly the mathematical modeling of Mindlin plate problems [17].
Let Q be the space domain in ®?, T' the boundary, and T the time domain. Let also the stress
resultants, generalized strains, displacements, dynamic surface loadings, and inertia forces be
denoted respectively by s, r, d, p, and q:

M, Yz

M, Yy w p ~phw_
s=| Mgy [, T=| T2y |, d=|0; |, p=|m; |, and q= 1—12-ph30"x

Q.z: Yz Hy my %phsgy

Qy Yyz

where p stands for the mass density (per unit volume), h the thickness of the plate, and © (v =
w, 0, or 6,) the second derivative of v with respect to time ¢: ¥ = 9%v/dt2. The subscripts z, y,
and z above represent the directions in the Cartesian coordinate system. The sign convention for
the displacements and external loadings is shown in Figure 1. Neglecting the damping effect of
the plate, the differential equations which govern the state of stress resultants, generalized strains,
and displacements in an elastic plate can be expressed as
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1. Equilibrium equations: LTs + p+ q = 0 in 2 ® T, subject to some appropriate
boundary conditions on I,

2. Stress-strain equations: s = Dr, and

3. Strain-displacement equations: r = L,d.

Here D is the material property matrix of an elastic plate. L; and L, are the differential operators:
I: 0 0 0 9/0z 8/0y }

d/oz 0 0/oy -1 0
0 Jd/oy dfox O -1

(1)

and

—0/0z 0 -0/0y -1 0
0 —d/dy —0ad/0z O -1

where the superscript T' denotes the transpose of a matrix.

0 0 0 0/9z 0/dy
L] =

For orthotropic material, the matrix D takes the form

D:L' Dl
D'l Dy
D = Dy, (3)
alGy
oG,
where D,, D, ..., G, are the standard flexural and shear rigidities of plates and « is a modification

coefficient to account for the deviation of shear strain distribution from uniformity [4] (a = 5/6 for
rectangular cross section; see [21, p. 371]). The rest of the entries in D are zero. If the material
is isotropic, then the nonzero entries take the following values:

ER? 1—v Eh
= Dy=vD,, Dyy=-—"D,, and Gy =G, = ——r
1201 — 77)’ 1=V v and G, =Gy 20 +7)

D, =D, = 5

where E, h, and v represent the material modulus, plate thickness, and Poisson’s ratio, respec-

tively. The total potential energy of the plate due to the dynamic surface loading p (17, 16, 14]
can be written as

M= /( /L2 \TD(Lyd) d) — /pTddQ——/d Ad dn) dt (4)

where d = 8d/dt and A = diag [—ph, Lk, 12ph3] awdia,gonal matrix.

A STRIP ELEMENT FOR MINDLIN PLATES

We now outline the FSM formulation for the Mindlin plates using linear elements [4, 19].
We shall confine our discussions to rectangular Mindlin plate problems simply supported on two
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Figure 2: A discretized plate.

opposite sides. Figure 2 shows a rectangular plate discretized into n — 1 finite strips. The plate is
assumed to be simply supported on edges y = 0 and y = Ly. Shown in Figure 3 is the mid-plane
of a typical linear strip plate element of constant thlckness h, whose local coordinate system is
denoted by (z', ', 2') where ' = z — z;, ¥’ = y, and 2’ = z. Let Q) be the domain of the eth
strip element and i and j be the two longitudinal edges (nodal lines) of the element, as shown in
Figure 3. Let d(¢)(z,y,t) and u(,(t) be defined as

dioy(2,9,1) = w(z,9,t) 0:(2,5,1) Oy(z,9,0]", (2,9) € QY

and
o) = | 5 | = [t 0400 00 1wl0 0300 afco)”

where w!(t) denotes the I** harmonic coefficient (amplitude) of w;(y,t) which is the displacement
along edge i, etc. For a linear strip element with m harmonic terms specified, the approximation
to d(.) is given [4, 18] by

d(e) T y, Z T,y u(e) ) (5)
with
NS 0 0 NS 0 0
0 NS 0 0 NS 0
0 0 NG 0 0 NG

where S; and C; are the I** harmonic functions of y, and N; and N; are the linear shape functions
of z, defined by

F' =

s Iry

S) = sin I, C _COSL_y’
1—r 147
N; = 2(), and N; = 2()
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Figure 3: A typical plate strip element.

where r(), ranging from —1 to 1, is the natural coordinate in x-direction of the e** element.
Note that r) = -1+ 251—‘_—2'— for the element shown in Figure 3. It should be observed that the
approximation to the displacement vector in (5) satisfies the simply supported boundary conditions
on edges y = 0 and y = Ly; i.e., w, 0., O0w/0z, 80,/dz, and 06,/dy all vanish on these two edges.
The dynamic surface loading on the e** element, p()(z,¥,t), can often be approximated by the
sum of a harmonic series in the longitudinal direction as shown below

p(e)(x) yat) ~ Z Hl(y)ph)(xst) (6)
=1
where H' = diag [S;, Si, €] and pie) = [q’ ml mg]f) . The subscript (e) outside the brackets

indicates that every component of the vector is associated only with the et* element.

Following the standard finite element procedure and taking advantage of the orthogonality
properties of the harmonic functions, we obtain a linear algebraic differential system of block
diagonal form [5] depicted by:

M+ Ku=f (7

where

M :MH@M??@”'@MmVH aﬁd K — K11®K22@___®Kmm
are block diagonal matrices of the same block structure. The vectors u and f are accordingly
partitioned,

uT= [(ul)T (u2)T (um)T] and fT_—_ [(fl)T (f?)T (f"")T]

In (7), the symbol @ stands for the direct sum of square matrices. MH# K% u', and f' are the
systemn mass matrix, system stiffness matrix, system displacement amplitude vector, and system
load amplitude vector due to the I** harmonic mode, respectively. In the rest of the paper, we
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shall drop the term amplitude and simply call u’ (f') the I** system displacement (load) vector
for brevity. M" is assembled from the strip mass matrix M( y; K" from the strip stiffness matrix

K(e), and f' from the strip load vector f(e) where

MY, = /Q()(F’ \TAFdQ,), 1=1, m, (8)
Kl = /Q() (LsFYTD(LsFYdQe, =1, m, 9)
f(e)_/Q() ¥ YTHpl, d0), =1, m. (10)

For a plate discretized with » nodal lines, K” and M" are square matrlces of order 3n for each .
(K( y and M(e are of order 6.) Once the entire system stiffness matrix K, system mass matrix
M, and system load vector f are assembled and the boundary conditions 1mposed the remaining
major work is to solve the linear algebraic differential system (7) for u, u, and 1.

PARALLEL AND VECTOR IMPLEMENTATIONS

Computational Procedure. Similar to the finite element method, FSM normally consists of
the following three main computational components: (1) the generation of strip stiffness/mass
matrices and strip load vectors for all strip elements, (2) the assemblage of the entire system
stiffness/mass matrix and system load vector, and (3) the solution process of the resulting linear
differential system Mu + Ku = f. There are many step-by-step integration methods available
for solving the 2nd-order linear differential equations. Among them are the central difference,
Houbolt, Wilson 6, and Newmark # methods. The central difference method is an explicit scheme

and the other three are 1mphc1t Regardless of whether the method employed is implicit or explicit,

the procedure basically involves an initial calculation of an effective coefficient matrix and then
solves an effective linear system, after an effective load vector is formed, at each time step. In this
paper, we employ the Newmark integration method whose procedure is shown below, where ao,
ai, -+, a; are the Newmark integration constants [3, pp. 311]:

(1) initial calculation of the effective stiffness matrix K = K + aoM, the factorization
of K into LLT or LDLY form, and then for each time step tx41, £ =0,1, -

(2) forming the effective load vector f at time SR fk+1 = fi +M(aouk+a2uk+a3uk),

(3) solving the effective linear system at time #x41: K'ugyy = frg1,

(4) calculating the acceleration and velocity vectors U4 and Uk4s:

Ukp1 = ao(Ukyr — Uk) — @2Uf — a3lx, Ugyy = Uk + @GsUg + a7lkyr.

Note that the first step need be performed only once. The last three steps, however, must be
performed at every time step and therefore constitute the most time-consuming part in the entire

analysis.
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To address the parallel implementation of FSM, we should first employ the decoupled structure
of the system stiffness matrix depicted by (7), due to the orthogonality properties of harmonic
functions. This decoupling leads to m independent sets of differential equations. Therefore, solving
(7) is equivalent to solving
' MW + KW =f, 1=1,m

where K" and M¥ [ = 1,---, m, are block tridiagonal matrices with each block of order only
3 x 3 for the ordering shown in Figure 2. Furthermore, each M consists of only three nonzero
diagonals. Since there is no data dependency among these m subsystems, not only can the
generation of M( K” , and f( ) and the assemblage of MY, K, and f' for each harmonic term be
performed 1ndependently, but all the subsystems can be solved in parallel. In a parallel computing
environment with parallelism of two levels (considering vectorization as the first level), this special
feature leads FSM to a fully parallelizable approach when the number of harmonic terms matches
the number of processors. The following pseudo-Fortran code outlines its computational procedure
and indicates where parallelism can be exploited for vector/concurrent executions.

C — Initial calculations

DO200!=1, m (concurrent, one CPU per iteration)
DO 100e=1, N, (to be discussed)
Generate K” M” , and f’
Assemble KS M” and f!
END 100
Initialize u/, 0', and @' (vector)
Form K¥ from K# and M" (vector)
Factorize K into LLT or LDLT form (vector)
END 200
C — Calculations for each time step
DO until the last time step (sequential)
DO400I=1, m (concurrent, one CPU per iteration)
DO 300 e=1, N, (to be discussed)
Generate f(’e) and assemble f’
END 300
Form effective load vector f/ (vector)
Solve K#u! = f! for u (vector)
Calculate &' and W' (vector)
END 400
DO600I=1, m (sequential)
Accumulate dlsplacements w for all strips (vector-concurrent)
END 600
END DO

In the above pseudo-code, we neglect the step of imposing boundary conditions because they
can be performed in the generation step. The word concurrent inside the parentheses after the DO
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statements is used to show that all iterations in this loop may be performed in parallel, on the basis
of one processor per iteration ; and the word vector (or vector-concurrent) indicates computations
involved in the statement should be performed in vector (or vector-concurrent) mode whenever
possible and desirable. Whether a vector operation is desirable depends on the startup overhead
and the vector length of the operation.

Data Structure and Parallelzzatzon To 'allow current code restructurers to automatlcally vec-

torize or parallehze certain computatlons the Fortran statements related to that part of compu-
~ tations are usually written in the form of DO loops or array constructs . Potential memory access

conflict must also be resolved. Therefore, the data structure of the code plays an essential role. In
our implementations, the system stiffness matrix K and system mass matrix M are represented
by two 3D arrays SK(1:nbk,1:n,1:m) and SM(1:nbm,1:n,1:m), respectively, where nbk (nbm) is the
semi-bandwidth of K (M), n the number of equatxb;sﬁ]ﬁ each Eari'homc term, and m the number
of harmonic terms. It should be noted that in many situations, it is more beneﬁcuﬂ to mterchange
the first two dimensions of both K and M, or to concatenate the first two dimensions into a single
dimension. The system load vector f is represented by a 2D array SF(1:n,1:m) and the vectors u,
11, and i are similarly represented by 2D arrays SU, SV, and SA, respectlvely This representation
allows parallelization across harmonic terms to be performed in the outermost loop. It also makes

the passing of references to subroutines an easy task.

"To serve as an example, we consider the DO 200 loop where the computations inside the loop
are now translated into subroutines as shown below (the DO 400 loop follows the same approach).

CVDSL CNCALL ! an Alliant directive
DO200L=1,m ! concurrent, one CPU per iteration
CALL GenAss (SK(1,1,L), SM(1,1,L), SF(L,L), L, n, nbk, nbm, ns, ...)
CALL Initialize (SU(1,L), SV(1,L), SA(1,L), ...) ! Initialize uo, o, and tio.
CALL Form (SK(1,1,L), SM(1,1,L), n, nbk, nbm, a0) ! Form K" and overwrite SK.
CALL Factorize (SK(1,1,L), n, nbk) ! Factorize K” and overwrite SK.
END 200

where GenAss is a subroutine performing the task of the DO 100 loop in the previous pseudo code.
The other three subroutines are self-explanatory. In the above code, the argument ns denotes the
number of strips N, and a0 is the Newmark constant ag. Using this approach, each processor will
have an identical local copy, automatically generated by the compiler, of the subroutines inside the
loop and its own reference space (via the index L) in locating K", M, and f’; yielding concurrent
execution for all harmonic terms because distinct processors will hold different values of L. This
not only prevents memory access conflicts in performing these tasks but also enables us to use a
single set of subroutines for all harmonic terms. The same applies to the other three subroutines as

well. Note that the index L is also passed to the subroutine GenAss as a local variable because it -

is requ1red for evaluating K( Y M(e), and f(e) whose dimensions should be declared inside GenAss
and will become local variables.
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Vectorization. To address vectorization, we now turn to the computations for a single har-
monic term. First we note that the formation of the effective stiffness matrix K" and effective
load vector f/, and the calculation of i’ and 0’ consist mainly of matrix-matrix (vector-vector)
additions and matrix-vector multiplications and are thus highly vectorizable. The vectorization
and parallelization of factorizing K% and solving the linear system K"u! = f' have been under
intensive studies; see [13, 15, 23] for example. In this paper, we shall only focus on approaches to
vectorizing the generation of K{’e) and the assemblage of K". The generation of Mi’e) (f(’e)) and
the assemblage of M" (f') follow the same way and, thus, need not be discussed.

There are two approaches to vectorizing the generation of Kﬁg) The first, referred to as
Vectorization within a Single Strip (VSS), is to generate the entries of K{’e) in vector mode. This
approach requires a minimal storage because Kﬁ,) for all strips can share the same storage of
a single strip stiffness matrix, which is usually the case for most traditional finite strip or finite
element programs. The disadvantage is that the vector length available for vectorization is limited
by the order of the strip stiffness matrix, 6 in our case, which is rather small. In addition, the
generation step may not even involve any loop structure because most of the Fortran statements
may simply be assignment statements when the entries of K%’e) are explicitly integrated. Therefore,
we resort to the second approach: Vectorization across Multiple Strips (VMS). This approach
generates the matrix entries component-wise across many different strips by employing the fact
that each strip matrix can be generated independently of the others. It, however, requires a
manual change in the data structure of the strip matrix in the computer program because current
code restructurers can hardly accomplish this task automatically. One way of achieving our goal
is to add one more dimension (preferably the first dimension) to the array that stores a strip
matrix so that the new array can store all strip stiffness matrices. For example, let EKL(1:6,1:6)
be the array used in the VSS approach for storing a single strip stiffness matrix and be shared
by all strips, one at a time. (For simplicity, we ignore the symmetry of the matrix.) When the
VMS approach is employed, we can simply change EKL to a 3D array, say EKL(1:ns,1:6,1:6), so
that the first dimension is associated with strip identifications, allowing vector execution to be
performed across strips. Although the change in data structure may impose some programming
difficulty in modifying an existing code, this approach indeed provides a very good way for both
vectorization and parallelization.

So far as the assemblage of the I'* system stiffness matrix K¥ is concerned, both VSS and
VMS are still applicable if potential data dependencies are avoided. Note that assemblying an
entry of K{’e) to K" has no conflict with assemblying the other entries of the same matrix to K.
Vectorization obviously can be performed within any single strip matrix without any difficulty,
subject to the same disadvantage of short vector length as the case in the generation step. The
following Fortran code indicates where vectorization can be performed using VSS for assemblying
the stiffness matrix, where the rows of SKL store the upper diagonals of the band symmetric
matrix K" using the Linpack format [12] with the main diagonal of K" stored in the last row of

SKL.
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DO 100 I = 1, NBK ! NBK (=6): Semi-bandwidth of K"
SKL(I, 1:N) = 0.0 (vector) ! Initialization. N: No. of equations of K"
END 100
DO 300 K =1, NS ! NS: No. of strips
Kl =3* (K-1)
DO200J=1,6
JI =K1 +1J
I1=NBK-J+1
SKL(I1:NBK, J1) = SKL(I1l:NBK, J1) + EKL(1:J, J)  (vector)
! Vector length too short.
END 200
END 300

Care, however, must be taken when the VMS approach is employed for assembling K". This is
because different strips may have some nodes in common, which amounts to saying that the entries
of K(e) from different strips may contribute themselves to the same location in K". Therefore, in
order to vectorize the assemblage of K" from K(e) across multiple strip elements, we must find
a way to avoid potential simultaneous updates of a common matrix entry. A general approach
to avoid this situation is to use graph coloring techniques to partition strips so that all strips in
the same group do not contain any common nodes. For our plate problems under consideration,
two colors are enough: one for odd strips and the other for even strips. When a natural ordering
is imposed as shown in Figure 2, however, a better approach to enhancing vectorization can
be employed by assemblying entries component-wise (or node-wise) across all strip elements as
shown below, assuming the i** strip starts from nodal line i to nodal line 41 and all strip stiffness
matrices are available.

DO 100 I = 1, NBK ! NBK (=6): Semi-bandwidth of K"

SKL(I, :N) = 0.0 (vector) ! N:No. of equations of K"
END 100 a
DO300J=1,6
JS=3*(NS-1)+J ! NS: No. of strips
DO2001=1,] ' '

IJ=NBK-J+1 e | R
SKL(IJ, J:J5:3) = SKL(1J, J:JS: 3) + EKL(I:NS, 1, J)  (vector)
END 200 -
END 300

Note that the array EKL now has one dimension more than the one used in the previous code.
The storage can be reduced hy ihout half if symmetry of the matrix is taken into account. Finally,
we would like to mention that for a cluster-based multiprocessor with parallelism of three levels
like the Cedar [11], FSM is a perfect candidate because the decoupling at the system level offers
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Figure 4: The triangular loading (uniformly distributed on the entire plate).

a great deal of freedom for the problem to be solved using all levels of parallelism. For example,
we need exploit only the first two levels of parallelism in a linear system solver instead of three
because the highest level of parallelism can be employed across multiple linear subsystems.

NUMERICAL EXPERIMENTS

To demonstrate the effectiveness and parallelizability of FSM, we consider the dynamic Mindlin
analysis of a thin steel plate that is simply supported on all of its four edges and is subject to a
uniformly distributed triangular loading ¢(t) as shown in Figure 4. This plate, adapted from [2],
is 60 inches (L;) wide, 40 inches (L) long, and one inch thick throughout the entire plate. The
material of the plate is assumed to be isotropic with Young’s modulus E = 30 x 10° ksi, Poisson
ratio v = 0.25, and a mass density of m = 0.00073 Ib-sec?/in*. The time step size At is set
to 0.00001 sec. In evaluating the strip stiffness matrices, reduced integration with one Gaussian
point is used to overcome the shear locking behavior [18]. The strip mass matrices are evaluated
using the consistent mass approach. The linear algebraic differential equations are solved using
the Newmark integration method with parameters a = 0.25 and § = 0.50 [3, pp. 311]. A banded
direct solver is used to solve the resulting linear subsystems in each time step.

In Figure 5, we compare the numerical solution of the displacement w at the center of the plate
using 16 Mindlin strip elements with the exact solution (Fourier series) derived from the Kirchhoff
thin plate theory. Eight harmonic terms are used in the finite strip approximation. From Figure
9, 1t 1s clear that the finite strip solution is in good agreement with the exact solution of the
Kirchhoff theory. The performance of this method on an Alliant FX/80 is shown in Tables 2 and
3. In Table 2, we compare the CPU time (all in seconds) consumed in the entire analysis, including
the generation, assemblage, and solution of the linear algebraic differential equations and finally
the calculation of the displacements. Three different execution modes: scalar (S), vector (V), and
vector-concurrent (VC) are considered. The compiler options [1] used for these modes are shown

in Table 1.

Table 2 shows the vector speedup (the ratio of the 1-processor CPU time spent under the
S mode to that under the V mode) for the entire process. As seen from this table, the vector
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Figure 5: Displacement at the center of the plate.

Table 1: Compiler options

rExecution mode | Compiler options | Subprograms compiled B

Scalar (S) -Og -AS -pg the entire program
Vector (V) -Ogv -AS -pg | the entire program
Vector-Concurrent -Ogv -AS recursively-called subroutines
(VC) -Ogvce -AS others

Table 2: CPU time (in seconds) and vector speedup on the Alliant FX /80 using one processor.

| Step [ Scalar (S) [ Vector (V) | S/V | Remark |

Solve LDLTu =1 177.1

137.1 1.29 | semi-bandwidth too small

Compute f, 0, @ (Newmark) 91.0

25.3 3.60 | mainly DAXPY operations.

Generate f(‘e) and assemble f 42.7

12.4 3.45 | using the VMS approach

Initialization and I/O 1.72

1.70 1.01 no manual optimization

[ Total | 3124

|

176.4 | 1.77 | ]
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Table 3: Parallel performance under the vector-concurrent mode.

No. of processors k 1 2 4 8
CPU time in seconds 165.7 | 84.14 | 45.01 | 25.08
Concurrency speedup Si || 1.00 | 1.97 | 3.68 | 6.61
Efficiency Ex (%) || 100.0 | 98.5 | 92.0 | 82.6

Concurrency speedup
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Figure 6: Concurrency speedup on the Alliant FX/80.
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speedups for the three most time-consuming parts: (1) solving Ku = f, (2) computing f, 1, and
i, and (3) generating f(le) and assemblying f are 1.29, 3.60, and 3.45, respectively. Note that
the semi-bandwidth of the system stiffness matrix is only 6 in this example, which is obviously
not long enough for a banded direct linear system solver to take advantage of vector instructions
in solving the linear system. The vector speedups for the other two parts, however, are very
satisfactory. It deserves mentioning that in generating f(’e) and assemblying f, we employed the
VMS approach which yields a much better vector performance than the VSS approach. Table 3
shows the concurrency speedup Sy, defined to be the ratio of the CPU time spent under the VC
execution mode of the entire program using only one processor to that using k processors and
the efficiency E; (= Si/k), the ratio of the concurrency speedup Sj to the number of processors
k. Figure 6 plots the speedup against the number of processors used. As seen from Table 3, the
concurrency speedups observed using 2, 4, and 8 processors are 1.97, 3.68, and 6.61, respectively.
This impressive performance clearly indicates the parallelizability of FSM on multiprocessors when
the number of harmonic terms used matches the number of processors available.

CONCLUSIONS

The eflectiveness and parallelizability of the finite strip method (FSM) for the dynamic analysis
of a class of Mindlin plates have been addressed and vector/parallel implementations presented.
The performance of this method on the Alliant FX/80 has also been tested using a rectangular
plate that is simply supported on all edges and is subject to a uniformly distributed triangular
loading. From the experiments performed, we have obtained concurrency speedups of 1.97, 3.68,
and 6.61 using 2, 4, and 8 processors, respectively. These speedups are satisfactory and very
encouraging. It clearly demonstrates the superiority of FSM in a parallel processing environment.
For vectorization, good performance has also been observed for the Newmark integration scheme
and for the generation/assemblage process using the VMS (vectorization across multiple strips)
approach. In summary, we conclude that, although vector performance during the solution stage
may be hindered by the small semi-bandwidth of the subsystems if a direct solver is employed, FSM
is highly parallelizable and, therefore, suitable for computation on multiprocessor or multicluster
computers. This is especially true when the problem requires a large number of harmonic terms
to yield accurate results.
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SUMMARY

In this article, we consider the application of three popular domain decomposition methods to
Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order
elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of
Smith, and the balancing method of Mandel applied to nonconforming elements are shown to
converge at a rate no worse than their applications to the standard conforming piecewise linear
Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the
existing theory for the conforming elements with only modest modification by constructing an
1somorphism between the nonconforming finite element space and a space of continuous piecewise
linear functions.

INTRODUCTION

We consider the convergence properties of domain decomposition methods applied to
Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order
elliptic problems. An isomorphism between the nonconforming finite element space with the
natural norm induced by the elliptic problem and a conforming piecewise linear space with the
H'-seminorm is constructed. Using the isomorphism, we are able to apply the existing analysis of
domain decomposition methods for conforming elements to nonconforming elements with only
modest modifications. As examples of this technique, we show that the operators arising in three
popular domain decomposition methods, specifically, the additive Schwarz method of Dryja and
Widlund [1], the vertex space method of Smith [2], and balancing method of Mandel [3], applied to
nonconforming finite elements have condition numbers that satisfy the same bounds as the ones
given in [4] and [5] for conforming finite elements.

The same technique was used in [6] and [7] to analyze the rate of convergence of balancing
domain decomposition and the standard additive Schwarz method for the dual-variable mixed finite
element formulation. Moreover, as a corollary of the analysis of Smith’s method for the
nonconforming spaces presented in this paper, we have a new bound for Smith’s method applied to
mixed finite elements.

*This work was supported in part by the National Science Foundation under Grant No. DMS-9112847.
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After the research for this paper was completed, the author was made aware of some related
work done concurrently by Sarkis [8]. In particular, the isomorphism used herein was independently
suggested by Sarkis for linear nonconforming elements. In [8], Sarkis constructs and analyzes
special coarse spaces such that when the overlapping additive Schwarz method is applied, the
condition number of the resulting operator is bounded by a constant times (1 + log(H/h))(1 + H/6)
in both two and three dimensions. Here H and & are the characteristic sizes of the subdomains and
mesh, respectively, and 6 is a measure of the overlap of subdomains. The notable characteristic of
Sarkis' bound is that the constant is independent of jumps in the coefficients across subdomain
boundaries. If the techniques of this paper were used to derive bounds that were independent of
the jumps in coefficients, the resulting bound would include one log factor in two dimensions using
[1, 9], but two logs in three dimensions using [5, 10, 11].

The remainder of this paper is divided into six sections. In the next section, we set some
notation, formulate the nonconforming problem, and construct an equivalent representation in
terms of the nodal values. In Section 3, we construct an isomorphism between the nonconforming
space and a continuous space of piecewise linear functions. The isomorphism is used in Section 4 to
analyze the rate of convergence of the Dryja-Widlund additive Schwarz method. In the last three
sections, we consider the substructuring methods of Smith and Mandel applied to the
nonconforming problem.

PRELIMINARIES

We consider the following self-adjoint, uniformly elliptic problem for p on the polygonal domain
Q c R", n = 2,3, with boundary 9§

—V-AVp=f in{, p=0 on d9Q, ()

where A is a uniformly positive definite, bounded, symmetric second order tensor, and f € L*(Q).
The uniform ellipticity of (1) implies the existence of positive constants ¢, ¢ such that the
following bound holds:

cbTE < ETA(x)E < c€T¢ VEE RV e Q. (2)

In order to set a length scale, we assume that the diameter of (2 is one. We introduce a two level
quasi-regular triangulation of {: a division first into subdomains {L}M, with diameter O(H), and
a refinement of the first into elements with diameter O(k). Following [12], define the scaled Sobolev

norms I
ull} g, = lulf g, + 7”““(2),9.» ”““f/z,anl = |u ?/2,3(2. + —lwlld 50,
7] 7
where
luldo, = [ lt@Fde, lulbon, = [ o) ds
| u(t) = u(s) [
e, = [ | Ve@Pde,  lulipan = [ [ s

Let M'(2) be a finite dimensional nonconforming finite element space of Lagrange-type defined
subordinate to the triangulation 7 that vanishes at all degrees of {reedom on 9. Since N(Q) is of
Lagrange-type, the elements in N(Q) may be expressed in terms of a nodal basis, and we may
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identify an element in A(Q) with the values it attains at the nodal points. For convenience, we
assume that the subdomains and the elements are triangular in two dimensions or tetrahedral in
three dimensions. Extensions to other shape regular decompositions are straightforward.

We consider the problem of finding p, € A(f2) such that

d(ph, ‘Ih) = ./Q f(]h dx Vflh S N(Q), (3)

where d is the generalized Dirichlet form:

d(pn, qr) = da(pn, ), do(pryan) = ). AVp, -V, dx.
Te€T, rc T

We now introduce several conventions used in this paper. In this paper, we shall only be
concerned with the solution of this finite dimensional problem, and will henceforth drop the “h”
subscript.

Having defined a parent finite element space of functions A'(Q) with a nodal basis and a set
¥ C Q, we will simply write X'(Q') for the restriction of X'(Q) to ¥, i.e.

X(QV) = { | 4 € X()}.

By an abuse of notation, we consider an element ¢ € X'(€') also to be an element of X'(2) by
setting ¢ to zero at all nodes outside of §)'.

We will write Q1 ~ Q; if two quadratic forms Q; and Q, with the same domain D are
equivalent, i.e. if there exists constants ¢;, ¢, > 0 such that

CIQ1(¢: ¢) < Q2(¢>¢) < CZQI(‘]S’ ¢)) V(ZS € D.

In what follows, C' will be used to denote a generic constant that may not be the same from one
line to the next. This constant, as well as the constants involved in the equivalence of quadratic
forms, will always be independent of & and I, but can depend on the constants in (2), the shape
regularity of the subdomains, the degree of the nonconforming finite elements, and the regularity of
the triangulation.

To conclude this section, we prove a lemma that provides an equivalent quadratic form for d(-,-)
in terms of the nodal degrees of freedom. The proof of this lemma was suggested by Joseph Pasciak
in the context of the mixed finite methods considered in [6, 7].

Lemma 1 Let Q' C Q be the union of clements of T. And let A(z) = a(:L')/T(w), where o 1s a
positive, piecewise constant function with value o, on 7 € T. Then for every p € N(Y),

do(pp) = 3 adlr|'™™" 37 (p(ni) = pl(n,))? (4)
TeT, nodes :
TCR ni,n; €1

The constants that appear in the definition of the equivalence do not depend on the constants in (2),
but rather on constants that arise when A is replaced by A.

Proof. The local kernel of d,(-,-) in A'(7) is exactly the constant functions on 7 since for
peEN(r)
d:(p,q) =0 VqeN(r), < Vp=0.
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Primary Vertex

Secondary Vertex
Original Edge
New Edge

Figure 1: Refinement of the 2D P-1 element and a partial refinement of the 3D P-1 element.

Hence, (d,(-,-))*/* is a norm on N(r)/R. Since all norms are equivalent on finite dimensional

spaces, we see that

dy(p,p) = arlr [ S (p(m) = p(m))’,

nodes :
ni,n; €7

by a simple scaling argument. The proof is completed by summing over the elements of 7 in . O
A CONFORMING EQUIVALENCE

In this section, we construct a conforming space that is isomorphic to A (Q) using the techniques
in [6, 7] and recall some basic properties about the isomorphism.

Given an element 7 € T, let 7. be a subtriangulation of 7 such that the vertices of the
subtriangulation include the vertices of 7 and the nodal points in 7 pertaining to the degrees of
freedom of N'(7). Every element in the new triangulation should have at least one vertex that
corresponds to a nodal point of N (). Moreover, the subtriangulations should be constructed in
such a way that the union of subtriangulations gives rise to a refined quasi-regular triangulation of

Q which we denote by R N
T = U 7..

A vertex of 7 will be called primary if it was a nodal point corresponding to a degree of freedom of
N(Q); otherwise, we call the vertex secondary. We say that two vertices of the triangulation T are
adjacent if there exists an edge of 7 connecting the vertices. An example of the subtriangulation of
the P-1 element that has nodal degrees of freedom at the center of its edges (faces) is given in

Figure 1.
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Let Un(Q) denote the space of continuous piecewise linear functions subordinate to the
triangulation T that vanish on Q. For Q' C , a union of elements, define Uy (') by restriction, i.e.

U(®) = {ujor | v € Un(2)}.

Since the functions in Uy(§') are naturally parameterized by the values they attain at the
vertices, we can define a pseudo-interpolation operator 7% into U, (') for any function ¢ defined at
the primary vertices contained in ' by

0, if z € 092 N QY
¢(z), if = is a primary vertex not in 9Q' N IQY;

The average of all adjacent primary vertices on the boundary
of &, if z is a secondary vertex in Q' \ 0Q;

T¥9(z) = S (5)
The average of all adjacent primary vertices, if z is a secondary
vertex in the interior of {';
The continuous piecewise linear interpolant of the above vertex
| values, if 2 1s not a vertex of 7.

Since 7% is well defined for any function defiued at the primary vertices, by an abuse of notation,
we can understand 7% both as a map from A(§') into Uy, (Q') and a map flom U, (©) into itself.
For any Q' that is the union of elementsin 7, let U;L(Q ) C Ui(€Y') denote the range of Zﬂ that is,

Uh( )—{¢ 10(13(16'/\/’( )}

We now prove that Z% : AN(Q') — U;L(Q ) preserves the norm induced by the bilinear form dai(-,-)
on N(§V) and the H'-seminorm on U, (Y ). Since 7% is a bijection between A/(Q') and T,(Q') by
construction, this proves that A/(€') and ,(§V) are isomorphic.

Theorem 2 Let ' C Q be the union of elements. Then for all p € N (@),
da(p,p) = |T"pl} o (6)
Proof. This proof is an expanded version of the proof given in [7]. Recall that for ¢ € Un(¥'),

$lerx 2 11T X () — () (7

reT, vertices :
TCQ' v,y ET

By virtue of Lemma 1 and Equation (7), it is enough to show that

oot () = p())t = Y [P Y (@) () — () ()P (8)

TeT, nodes : reT, vertices :
TCcQ n,n; €71 rc Y vi vy €7

Since vertices of 7, contain the nodal points of 7 and p = I%p at these points, we have

S @) -p))<C Y Y (@) () - () ()

nodes : 7€7T, vertices:
A
ni,n; €71 v, €T
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where the constant is controlled by the regularity of the subtriangulation. Hence, by summing over
the elements of 7 in Q', we conclude that the right hand side of (8) dominates the left hand side.
To prove that the left hand side dominates the right, we note that the differences in the right
hand side are of three types: the difference at two primary vertices, the difference at two secondary
vertices, and the difference at a primary and a secondary vertex. Since p and T%p agree at primary
vertices of 7, the difference at two primary vertices occurs as a term in the left hand side. For two
secondary vertices v;, v; in an element 7 € T containing a primary vertex v,, we see that

((3%) (w0) = (%) (v))” < 2 ((2P) (v0) = (D) ()" +2((F7D) (v2) - (D) ()"

Hence, it is enough to bound the difference at a secondary and primary vertex by terms in the left

hand 81de of (8).
Let v,4; be a secondary vertex with adJacent primary vertices vy,...,v,, and let p; = p(v;).
Noting that for j =1,...,n

(iﬂ'P) (v;) = ps, (ia ';v) (Vng1) =

S| -

zn:( ) (v;) = — j:ilpj’

=1
we see that

"

() Gasn) = (%) 0)" = (Z"“ o ) 5 )’

i=1

by the Cauchy-Schwarz inequality. The proof is completed by summing over all triangles of T. The
number of such terms, and hence the constant in the bound, is controlled since the regularity of the
mesh implies that there is an a priori maximum number of adjacent elements that can share a
secondary point. O

Using the techniques in the proof of Theorem 2, the following lemma is easy to prove.

Lemma 3 There exists a constant C depending only on the regularity of the triangulation T and
the degree of the nonconforming space such that for any Q' C Q, the union of elements of T,

7%l < Clglia Vo € Un(), k=0,1. 9)

THE DRYJA-WIDLUND ADDITIVE SCHWARZ METHOD

The presentation in this section and the next follows the treatment of Schwarz methods given by
Dryja and Widlund in [4]. We concentrate only on the additive Schwarz methods with exact solves.
The convergence rate of the multiplicative Schwarz method may be estimated in terms of the same
quantities (see [13]) and is easily worked out. Extensions to inexact solves are likewise direct.

Recall that the additive Schwarz method with exact solves for (3) is completely determined by a
decomposition of the finite element space N (2) = My + A, + ... + Ny For each subspace N,
define an operator P, : A'(f2) = N, by

d(Pip,q) = d(p,q) Vg€ M. (10)
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The additive Schwarz algorithm with exact solves for (3) involves the solution of

» M = M
Pp=f, P=) P, [

i=0 1=0

fis (11)

Il

where f; € N is defined by
dfia) = [ fade Vae .

Abstract bounds on the condition number of P have been derived in terms of two quantities, Co
and the spectral radius of £, which we now define. Let Cy be a constant such that for every p € N
there exists a representation p = M p; with p; € A satisfying

M
Y dpi,pi) < Cod(p, p). (12)

1=0

Let p(€) denote the spectral radius of £ = {¢;;}, the matrix of strengthened Cauchy-Schwarz
constants; that is, ¢; is the smallest constant for which

1 1 ..
|d(pi, p;)| < €;d(piypi)2d(ps,p;)? Vpi € Niy Vp; € Nj, 4,5 2 1 (13)

The next theorem, due to Dryja and Widlund [14], bounds the condition number of the additive
Schwarz method in terms of Cy and p(&):

Theorem 4 The eigenvalues and the condition number £(P) of P satisfy
)‘min(P) Z C()_lv Amax(P) _<_ (/)(5) + 1)3 K(P) S C()([)(g) + 1) (14)

To construct the decomposition of A(Q) to be used in our application of the additive Schwarz
algorithm for nonconforming elements, we first create an overlapping decomposition of the domain
Q by extending each subdomain €; to a larger region Q! which is also the union of elements of 7.
We characterize the extent of the overlap of the partition {Q}*, by &, where

§= _1PinM dist (09, \ 90, 09\ 9Q).

1

The decomposition {§2/}M, gives rise to a natural decomposition of A(Q) by letting M; C N'(€)
denote the set of functions that vanish at all nodes in the closure of (2 \ Q). In order to provide a
mechanism for global exchange of information between subdomains so as to enhance the rate of
convergence, we also use a low dimensional space defined by

No={peNQ)|p=T"4¢ € Un(D},

where % is nodal interpolation into A'(Q), and Uy (Q) is the space of continuous functions that are
linear on each subdomain ;. Note that the subspaces for the nonconforming space are exactly the
nodal interpolants of the standard decomposition of tlie conforming space U, (), namely,
Un(2) N HY().

In the following lemma we recall the crux of the proof due to Dryja and Widlund (Theorem 3 of
[4]) that the Schwarz method applied to the conforming Galerkin discretization has a condition

number that is O(1 4+ (H/46)).
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Lemma 5 For every ¢ € Uy(Q), there exists a decomposition ¢ = Mo & with ¢ € Uy(Q),
¢ € Un(Q) N HY(Q), 1 <i <M and a constant C independent of h, H, and é, such that

M H
Slekta < C(145) e (15)

We now show that the application of the Schwarz method to the nonconforming space converges
at the same rate.

Theorem 6 The condztzon number n( ) of the additive Schwarz operator P defined by (11) induced
by the decomposition N( )=MNo+...+ Nu of the nonconforming finite element space satisfies

x(P) < C (1 + %’-)

The constant C is independent of h, 6, and H.

Proof. The verification that the largest eigenvalue of P is bounded by a constant is standard.
Since d(p;,p;) = 0 for p; € N;, p; € N with QN Q) =0, P may be written as the sum of an a
priori bounded number of disjoint projections. Since projections have unit norm, a constant bound
on the largest eigenvalue of P is immediate. See, e.g., Lemma 3.1 of [2].

For p € N(Q), let (I%); denote the decomposition of IQp € U,() arising in Lemma 5, and set

IN((Zﬂp) ;). It is easy to check that p; € ./V, and p= M p;. Using Theorem 2 and Lemma 3,
we see that for t = 0,..., M,

d(pi,ps) < CITHTW):)2 0 < CI(TP)l}

Summing and applying Lemma 5 and Theorem 2, we conclude that

H
Edn,p,) < czl(z“p <c(1+ ) Eritasc (14 5) dnr)
Hence, Cy in (12) is bounded by C (1 + H/6). An application of Theorem 4 completes the proof. 0

SUBSTRUCTURING DOMAIN DECOMPOSITION

The remaining two methods considered in this paper are domain decomposition methods applied
to a reduced problem involving only the degrees of freedom on the internal interfaces of subdomains
' = UM 90, \ 89. Following [4], we recall the construction of the reduced problem. Since () is
of Lagrange-type, we may associate with functions p, ¢ € N () the vectors of values they attain at
the nodes. Let z and y denote the vectors of nodal values of p and ¢, respectively, and () y(') the
subvectors of degrees of freedom in ;. Let DG denote the local btlffness matux arlsmg from
dq,(,-), and let D denote the global stiffness matrix, i.e.

AT oy G AT ~ih G
0" Dy ® = dq,(p,q), +TDy = Z 207 poy, ) = d(p,q).
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For each subdomain, we can partition the degrees of freedom z*) into two sets, the ones related to
nodes on the boundary of Q; denoted :z;g), and the ones corresponding to nodes in the interior of {;
denoted ;vgf). Such a partitioning induces a partitioning of D given by

aNT i i i
x“"TD“)u"'):(wi';) ( D((I"I)T D‘g'% )(J%;)
‘ l’é Dig  Dpgp )]

The interior unknowns of each subdomain may be eliminated in terms of the boundary unknowns.
The resulting matrix, S, is the Schur complement with respect to the interface unknowns defined by

)T oy G : i i D\—1 (i
r5Sys = Y, 25 SUyY), where SO = DYy — DYT (D)1 DY,
i=1,...M

It will be convenient to work with the bilinear forms induced by § and S and so we define

s(p,q) = «5Sys,  si(p,q) = :L'g)TSU)yg).

For a function p € AV (Q), we note that unlike conforming spaces, the restriction of p to the
interfaces, pir, is not solely determined by the nodal values on I since A (€2) is nonconforming.
Hence, we are careful to understand N(I') as a subset of A’(Q) parameterized by the nodal values
on I' consisting of the discrete harmonic extension of the nodal values to the interior of the
subdomains. Specifically, if p € A(T) has the vector of nodal values .’cg) on O}, then pq, is the

function associated with the vector of nodal values (.’L'([i), :L'g))T where xﬁ" satisfies
Dif}) = - Df}af).
A linear functional g is easily constructed such that finding p € MT) satisfying

s(p,q) = g(g) Vg€ MT) (16)

1s essentially equivalent to (3).

We now construct a conforming space of functions that is isomorphic to M) with the norm
induced by the bilinear form s(-,-). Let U,(T') denote the restriction of Un(Q) to UM, 09;. Since
functions in Ux(T) vanish on 9Q (because functions in U, (9) do), functions in Ur(T') can be
parameterized in the natural nodal basis by the values they attain at the vertices of 7 in T.
Analogous to (5), for I the union of edges (and faces in 3D) in the triangulation 7 and ¢ a
function defined at the primary vertices in [, define a pseudo-interpolant 77'¢ € Un(T’) by

(0, ifz € T" NN,
¢(x), if z is a primary vertex not in [V N 9Q;

frqu(:c) = ¢ The average of all adjacent primary vertices on IV if  is a (17)
secondary vertex on I";

The continuous piecewise linear interpolant of the above vertex

values, if = is not a vertex of 7.
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Note that if ' = 8¢, then I'¢ = (Z9$) a0 for all ¢ in N(') that agree with ¢ at the nodal
degrees of freedom of 9.

Since I is well defined for any function defined at primary vertices, by an abuse of notation, we
can understand I both as a map from A(I) into U,(I") and a map from Un(T') into U (I'"). We
denote the range of I by _ ~

Un(I") = {(T )ity € Un(l)}-

The equivalences in the following lemma are a combination of the standard trace theorem and an
extension theorem for U,(0%). In particular, the proof of this lemma given in [6] shows that the
space Uy(§:) is rich enough to inherit the Extension Theorem of Widlund [15] from U, ().

Lemma 7 For ¢ € (7};(39:'),

I8lljz00: > inf  llélha,  [Blyzea = inf [dlia, (18)
¢ € Un(Q) 8 € Un(S:)
dloa, = ¢ dloa; = ¢

Additionally, there exists a constant C independent of mesh parameters such that

172% |k 00, < Cloleoa, Vo€ Un(d), k=0,1/2. (19)

The following theorem plays the role of Theorem 2 for the interface problem.
Theorem 8 For all p € N(T'),
si(p,p) =~ |j69'1‘ﬁ/2,an,- (20)

Proof. By a direct computation followed by an application of Theorem 2 and Lemma 7 noting

that U, () = T%WN (), we see that

sip.p) = _inf  do(Fp)~ _inf  |I%pli g ~ %012 0.
(P l) 5N (@) ﬂ.(! 1) 7N ‘ 1|1,Q. | 1!1/2,6(2
Plon, = P Ploa, =P

SMITH’S VERTEX SPACE METHOD

Smith’s vertex space method [2] is an additive Schwarz method applied to the interface problem
(16). The decomposition of M(T') is constructed slightly differently in two and three dimensions. In
both cases, we first partition T into overlapping subsets based on its decomposition as the boundary
of subdomains. In two dimensions, for eacl vertex V; of T, let FX’ denote the set of points on I’
that are less than a distance 8§ from V;. For each edge E; of T, let I'F* denote the interior of the
edge E;. In three dimensions, for each vertex V;, each edge E;, and each face Fi of T, define F:,-,’ as
above, let Ff“ denote the interior of the face Fy, and let TZ* denote the set of all points in strips of
width & on all faces which share the common edge E;.

Understanding the set of faces to be empty in two dimensions, the decomposition of I' into

subsets induces a decomposition of M(I') by considering

NI = X NI,

(J‘E(}I‘Enl’/_]ka}
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where for G € {E;,V;, F,}, N(I'§) C N(T') are those functions that vanish at all nodal points on T’
that are outside of the set T§¢, and M (TH) C M(T') are those functions that are the nodal
interpolant of the restriction to I' of continuous functions that are linear on each subdomain Q; and
vanish on 0.

The following lemma is the crux of the analysis of Smith’s method by Dryja and Widlund [4] for
conforming elements.

Lemma 9 For every ¢ € U, ('), there exists a decomposition

¢ = > ¢c

Ge{H,E\\V;,Fi}

with ¢y € Un(T), ¢ € Upn(T§) = Un(T) N HYTE) for G € {E.,V;, F}} such that

) Z|¢C‘|1/299 < C (1 +log(H/6)) Z|¢|1/2an (21)

Ge{H.E,.V, F} i=1
The constant C is independent of the choice of ¢, and the mesh parameters h, H, and 6.

Let Pr : M(T') — N(T) denote the additive Schwarz operator defined by (10) with the bilinear
form d(-,-) replaced by the interface form s(-,-) and the decomposition of AN (§) replaced by the
decomposition of M(T') described above. We now prove that the condition number of A} for the
nonconforming space has the same bound given in [4] for the similar operator for the conforming
finite element space.

Theorem 10 The condition number of the additive Schwarz operator Pr for szth s decomposition
for the nonconforming finite element discretization satisfies

K(Pr) < C((L + log (H/8))". (22)
The constant C is independent of the mesh parameters h, H, and §.

Proof. As in the proof of Theorem 6, Pr may be written as the sum of an a priori bounded
number of disjoint projections, and so the largest eigenvalue of Pr is bounded by a constant.

To bound the smallest eigenvalue, we also proceed as in the proof of Theorem 6. For p € M(T),
set pg = I} ((fp)g) G € {H,E;,V}, F}.}, where T¥ is interpolation at the nodes on T into NM(T)
and (Irp)g is the decomposition of Z'p € U,(T) that arises in Lemma 9. Since Z'p and p agree at
the nodal degrees of freedom of A(T'), and

N(IF) =¥ (Uu(T),  N(IT) =¥ (UTF)) VG e {E,V;, F},
it 1s easy to check that

p= > e

Ge{H,E\\V, F.}

Working one subdomain at a time and using Theorem 8 and Lemma 3, we see that for G = H and

for G € {E;, V;, Fi.} such that T'¢ N 9Q; # 0 we have

si(pa,pa) < C1%%al} 00, = CII(Tp)a) Wi 200, < CUT P)ali 200, (23)

103



Assume that we can prove that there exists a constant independent of h, H and é such that
Zlfpil/'l(?ﬂ < CZUO Ph/z sa, VYp€N(T). (24)
=1

Then by summing (23) over subdomains and subspaces, noting that s;(pg,pe) = 0if I'Y N oYY =0,
and applying Lemma 9, Equation (24), and Theorem 8, we see that

3

> s(pe,pc) = ) Zw(pcmc)<0(l+1og H/§)) Z‘fplf/z,an;

Ge{H,E;,V; Fx} Ge{H.E:,V;,F} i=1 -1
< C(1 +log(H/8)) ZITmPIman < C (1 +log (H/8))" s(p,p)-

The proof of the condition number bound now follows from an application of Theorem 4, and we
are only left to verify (24).

Define a pseudo-interpolant TNC L A(Q) — U,(Q) by (5), noting that the boundary of @\ T is
dQ UT. Using the techniques in the proof of Theorem 2, it is easy to show that there exists a
constant C; depending only on the regularity of the mesh and the degree of the nonconforming
space such that

M
Z 1T plla < CL Y 1%l a, VP EN(Q).
=1 =1
By Lemma 7, for each p € N(I') there exists an extension pE € N(Q) that agrees with p at the
nodal points on I' such that

|77 pF 1a, < C‘jﬂniplg/man‘ i=1,..., M.

Combining these results after another application of Lemma 7 with ¢ = I'p, we conclude that

Zﬁrph/zan. SCZIZQ\ E‘]Q <CZ|ZQPE!19 <C|;Za Ph/wna
=1

which verifies (24). O

In [6], the interface form arising from the discretization by mixed finite elements of (1) was
shown to satisfy Theorem 8 with A/(T') replaced by the appropriate space of interelement
multipliers. Hence, the proof given above is applicable to discretization by mixed finite elements,
and we arrive at the following corollary.

Corollary 11 The application of Smith’s decomposition method to the dual-variable mized finite
element formulation discussed in [6] results in an operator whose condition number grows at worst

like O((1 + log (H/8))*).

BALANCING DOMAIN DECOMPOSITION

As the final domain decomposition metliod considered in this paper, we investigate the balancing
domain decomposition method of Mandel [3] applied to nonconforming finite elements. The method
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involves the iterative solution (usually by conjugate gradients) of (16) preconditioned by the
balancing preconditioner described in Algorithin | below. Each iteration involves the solution of a
local problem with Dirichlet data, a local problem with Neumann data, and a “coarse-grid”
problem to propagate information globally and to insure the consistency of the Neumann problem.
The theory and practical performance of balancing domain decomposition for the standard
conforming Galerkin finite element method and mixed finite element method are the subjects of [5]
and [6], respectively. As in previous sections, we will deduce the convergence theory for the
nonconforming spaces from the conforming theory in [5] using the isomorphism introduced in the
fifth section of this paper.

One remarkable property of balancing domain decomposition is that the bound on the condition
number of the preconditioned operator is independent of jumps in coefficients across subdomains.
Specifically, let the tensor A4 in (1) be written as A(z) = a(z)A(x), where a is a positive function
that is piecewise constant with constant value a; on §;. The uniform ellipticity then implies that
there exists positive constants ¢,,¢* such that

CeaitTE < ETA(2)E < TautTE VE € R, Vz € (. (25)

The bound on the condition number of the operator that arises in balancing domain decomposition
will depend on ¢, and ¢ but will be independent of «; and ¢. and ¢* in (2).

Following Mandel’s original exposition in [3], we now recall the balancing preconditioner in terms
of matrices. A equivalent variational presentation is given in [6]. By an abuse of notation, we use
the same symbol to denote an element in A(T') and its associated vector of values attained at the
nodal degrees of freedom.

The balancing preconditioner is parameterized by two sets of matrices, a set of weighting
matrices {W;}*, and a set of kernel generators {Z;}M,. The weighting matrices
Wi : MN(0Q:) — N(9Q) are chosen such that they form a decomposition of unity on AM(T), i.e.

M
Z N,-I/V,'NiTp =p Vpe N(T),

1=1

where N; denotes the canonical inclusion mapping N; : M(9€;) — M(T) by extending elements of
N(0%%) by zero at all other degrees of freedom. A prescription for the weighting matrices that
guarantees a convergence bound independent of coefficient jumps between subdomains is given in
Lemma 12 below. For each subdomain Q;, let n; = dim(AM(99,)), and select an n; x m; matrix Z; of
full column rank with 0 < m; < n;, such that

KerS; C RangeZ;, i=1,...,M. (26)

For the scalar, second order, elliptic problems we consider in this paper, KerS; is empty if there is
Dirichlet data imposed on any part of 9Q; N JQ, otherwise it is the set of functions that have the
same value at all the nodes on 9Q;. From the kernel generators, we construct a “coarse space”,

Ny C M(T), defined by

M
My ={peNT):p=> NWzz¢€ RangeZ}.

i=1
We say that ¢ € M(T) is balanced if it is orthogonal to A; that is,
ZIWINTg =0, i=1,...,M. (27)
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Let |pi|% = si(pi, pi)- Considering those p; that are orthogonal to the range of Z;, working one glob
at a time, and using (36), (19), Lemma 13 and (36) in that order, we have

|I?[(EGian‘Pi)|25, ajCﬁm’EGim'Pilf/z,an, < ajC|EGiOQ‘Pi|§/2,aQ, (37)
a;C(1 + log (H/R))HT%p; 12,00,

g_—:_o(l + log (H/h))zh’ilgi'

IA A

IA

By the construction of the decomposition, there is an a priori maximum number of globs that
intersect 8Q; N AN;. Summing over such globs, we conclude that

s;(NT Nipiy NTNips) S =2C(1 + log (H/1))si(pis )
The proof is completed by appealing to the bound in Lemma 12. 0O
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SUMMARY

Recently the GMRESR inner-outer iteration scheme for the solution of linear systems of equations has
been proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and
Vassilevski [1] and Saad (FGMRES) [10]. The outer iteration is GCR, which minimizes the residual over a
given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction
vector by approximately solving the residual equation. However, the optimality of the approximation over
the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal
corrections to the solution in the outer iteration, as components of the outer iteration directions may
reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR
in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular,
non-symmetric operator. We will discuss some important properties and we will show by experiments that,
in terms of matrix vector products, this modification (almost) always leads to better convergence. However,
because we do more orthogonalizations, it does not always give an improved performance in CPU-time.
Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer
GCR process. The experimental results indicate that for such methods it is advantageous to preserve the
orthogonality in the inner iteration. Of course we can also use other iteration schemes than GMRES as the
inner method. Especially methods with short recurrences like BICGSTAB seem of interest.

INTRODUCTION

For the solution of systems of linear equations the so-called Krylov subspace methods are very popular.
However, for general matrices no Krylov method can satisfy a global optimality requirement and have short
recurrences [5]. Therefore either restarted or truncated versions of optimal methods, like GMRES [11], are
used or methods with short recurrences, which do not satisfy a global optimality requirement, like BiCG
[6], BICGSTAB [14], BICGSTAB(!) [12], CGS [13] or QMR [8]. Recently Van der Vorst and Vuik proposed
a class of methods, GMRESR ([15], which are nested GMRES methods; see Fig. 2. The GMRESR
algorithm is based upon the GCR algorithm [4]; see Fig. 1. For a given initial guess zgy, they both compute
approximate solutions zj, such that = — 2o € span{ui,us,...,ux} and |rgll2 = ||b — Az||2 is minimal.
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GCR: GMRESR:

1. Select =y, m, tol; 1. Select x4, m, tol;
ro =b— Azg, k= 0; o =b— Azg, k = 0;
2. while ||rg|2 > tol do 2.  while ||ri]l2 > tol do
k=k+1; k=k+1;
Uk = T-1; Ck = Aug; Uk = P k(A)r-1; Ck = Aug;
fori=1,k—1do; fori=1,...,k—1do
Q; = CTCk; 0y = c’fck;
Ck = Ck — 05C3; Ck = Ck — O4Ci;
Up = U — Ui, o U = Uk — O3l
ck = ck/|lexll; cx = ck/llckll2;
uk = uk/ |lckll; uk = uk/||ckll2;
Tk = Th_1 + (C} Tk—1)Uk; x = T-1 + (Cf Th-1)Uk;
Tk = Tk—1— (Cx Tk—1)Ck; Tk = Tk-1 — (Cx Tk-1)Ck;

Pyn k(A) indicates the GMRES polynomial that
is implicitly constructed in m steps of GMRES
when solving Ay = rg_1.

Figure 1: The GCR algorithm Figure 2: The GMRESR algorithm

However, they compute different direction vectors u. GCR sets ug simply to 7.1, while GMRESR
computes uy, by applying m steps of GMRES to ri_1 (represented by Pm k(A)ri—1 in Fig. 2). The inner
GMRES iteration computes a new search direction by approximately solving the residual equation and
then the outer GCR iteration minimizes the residual over the new search direction and all previous search
directions u;. The algorithm can be explained as follows.

Assume we are given the system of equations Az = b, where Ais a real, nonsingular, linear (n X n)-matrix
and b is a n-vector. Let Uy and Cy be two (n x k)-matrices for which

Cy = AU, CFYCy=I, (1)

and let Ty be an initial guess. For zx — zg € range(Uy) the minimization problem

"b - Axk”;) = min "7‘0 - A:L‘”;;. (2)
zerange(ll)
is solved by
T =Zp+ UkCZ‘To (3)
and 1y = b — Axy satisfies
re =79 — CkCirg, 7k L range(Ck) . (4)

In fact we have constructed the inverse of the restriction of A to range(Ux) onto range(Ck) . This
inverse is given by
A"lccT =ULCT. (5)

This principle underlies the GCR method. In GCR the matrices Uy = [urug...ux) and Cx =[e1ca. . - ci]
are constructed such, that range(Ux) is equal to the Krylov subspace

K*(A;ro) = span{rg, Ary,..., A¥"1ro} . Provided GCR does not break down; i.e. if ek Y Tr_1, it is a finite
method and at step k it solves the minimization problem (2).
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Consider the k-th step in GCR. Equations (1)-(3) indicate that if in the update ux = rx_; (in GCR), we
replace Tx_1 by any other vector, then the algorithm still solves (2}; however, the subspace Uy will be
different. The optimal choice would be u; = ex_1, where ex_; is the error in zx_1. In order to find
approximations to ex_1, we use the relation Aeg_; = 7x_1 and any method which gives an approximate
solution to this equation can be used to find acceptable choices for ux. In the GMRESR algorithm
GMRES(m) is chosen to be the method to find such an approximation.

However, since we already have an optimal xx_1, such that zx_; — zo € range(Ux_1) , we need an
approximation u to ex_1, such that c; = Auy is orthogonal to range(Ci_1) . Such an approximation is
computed explicitly by the orthogonalization loop in the outer GCR iteration. Because in GMRESR this is
not taken into account in the inner GMRES iteration, a less than optimal minimization problem is solved,
leading to suboptimal corrections [2] to the residual. Another disadvantage of GMRESR is that the inner
iteration is essentially a restarted GMRES. It therefore also displays some of the problems of restarted
GMRES. Most notably it can have the tendency to stagnate (see NUMERICAL EXPERIMENTS).

From this we infer that we should preserve the orthogonality of the correction to the residual also in the
inner GMRES iteration. In order to do this we use Ax_; = (I — Ck_lC,'f_l)A as the operator in the inner
iteration. This gives the proper corrections to the residual: cx € K™(Ag-1; Ax-17k-1). However, the
corresponding corrections to the approximate solution (contrary to ordinary implementations of Krylov
methods) are found by ux = A~ lcy € A"1K™(Ag_1; Ak—17k-1). These corrections can be computed since
the inverse of A is known over this space. Equation (5) gives:

A 1A = ATTA- ATIC 1 CF_A=T-U;_,CT_A. (6)

This leads to a variant of the GMRESR iteration scheme, which has an improved performance for many
problems.

In this article we will consider GMRES and BICGSTAB as inner methods. In the next section we will
discuss the implications of the orthogonalization in the inner method. It will be proved that this leads to
an optimal approximation over the space spanned by both the outer and the inner iteration vectors. It also
introduces a potential problem: the possibility of breakdown in the generation of the Krylov space in the
inner iteration, since we iterate with a singular operator. We will show, however, that such a breakdown
can never happen before a specific (generally large) number of iterations. Furthermore, we will also show
how to remedy such a breakdown. We will also discuss the efficient implementation of these methods and
how we can truncate the outer GCR iteration. Qutlines of the algorithms can be found in [7], [2].

CONSEQUENCES OF INNER ORTHOGONALIZATION

To keep this section concise, we will only give a short indication of the proofs or omit them completely.
The proofs can be found in [2]. Throughout the rest of this article we will use the following notations:
By Uk = [u1 .. .ux] and Ck = [c1 ... cx] we denote matrices that satisfy the relations (1);

By zx and 71 we denote the vectors that satisfy the relations (2)-(4);

By Pi and Qx we denote the projections defined as Py = C,;Cf and Qx = UkCZA;

By A; we denote the operator defined as A = (I — Py)A4;

By Vi = [01 ..., Um] we denote the orthonormal matrix generated by m steps of Arnoldi (GMRES)
with Ay and such that v; = 7¢/||7x]|2-

From this and (6) it then follows that

o 0 0 0 ©o

AQr = PA, and A 'Ap = (I - Q). (7
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We will describe the (k + 1)-th step of our variant of the GMRESR iteration scheme, where in the inner
GMRES iteration the modified operator Ay is used. We use m (not fixed) steps of the GMRES algorithm
to compute the correction to 741 in the space K™ (Ag; Axry). This leads to the optimal correction to the
approximate solution zx,; over the ‘global’ space range(Ux+1) @ ATTK™(Ag; Agri)-

Theorem 1 The Arnoldi process in the inner GMRES iteration defines the relation AV, = i1 Hm,
with Hy, an ((m + 1) x m) Hessenberg matriz. Let y be defined by

: mi — ALV gl = mi — Vi1 Heillo-
y: min Ik — AxVindll2 Jin, Ire — Vg1 Hrll2 (8)

Then the minimal residual solution of the inner GMRES iteration: (A~1AxVi,y) gives the outer
approzrimation

Ti41 = Tk + (I — Qk)Vimy, (9)

which is also the solution to the ‘global’ minimization problem

Tpe1:  min [|b— Az (10)
Ferange(U) )@
range{Vin)

It also follows from this theorem that the GCR. optimization (in the outer iteration) is given by (9), so that
the residual computed in the inner GMRES iteration equals the residual of the outer GCR iteration:

Tey1 = b— Azgy1 = b— Azy — AyVy = ri — AxViny. From this it follows that in the outer GCR iteration
the vectors ux,1 and cgy1 are given by

Ck41 = (Akay)/“Akay”27 (11)
Ukl = ((I—Qk)vmy)/"Akay”2' (12)

Note that (I — Q)Viny has been computed already as the the approximate solution in the inner GMRES
iteration; see (9), and AxV;,y is easily computed from the relation AxVny = Vins1Hym. Moreover, as a
result of using GMRES in the inner iteration, the norm of the residual 1 as well as the norm of AxVy
is already known at no extra computational costs. Consequently, the outer GCR iteration becomes very
simple.

We will now consider the possibility of breakdown when generating a Krylov space with a singular,
nonsymmetric operator. Although GMRES is still optimal in the sense that at each iteration it delivers the
minimum residual solution over the generated Krylov subspace, the generation of the Krylov subspace
itself, from a singular operator, may terminate too early. The following simple example shows that this
may happen before the solution is found, even when the solution and the right hand side are both in the
range of the given (singular) operator and in the orthogonal complement of its null-space.

Define the matrix A = (ez e3 eq 0), where e; denotes the i-th Cartesian basis vector. Note that

A = (I —e1eT){ez €3 e4 €1), which is the same type of operator as Ak, an orthogonal projection times a
nonsingular operator. Now consider the system of equations Az = e3. Then GMRES (or any other Krylov
method) will search for a solution in the space

span{es, Ae3, A’es,...} = span{e;, e4,0,0,...}.

So we have a breakdown of the Krylov space and the solution is not contained in it. We remark that the
singular unsymmetric case is quite different from the symmetric one.
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In the remainder of this section we will prove that a breakdown in the inner GMRES method cannot occur
before the total number of iterations exceeds the dimension of the Krylov space K(A; 7). This means that,
in practice, a breakdown will be rare. Furthermore, we will show how such a breakdown can be overcome.

We will now define breakdown of the Krylov space for the inner GMRES iteration more formally.

Definition 1 We say there is a breakdoun of the Krylov subspace in the inner GMRES iteration if
Axvy, € range(Vy,) , since this implies we can no longer expand the Krylov subspace. We call it a lucky
breakdown if v; € range(AxVi) , because we then have found the solution (the inverse of A is known
over the space range(AxVy) ). We call it a true breakdown if v; ¢ range(AxVi,) , because then the
solution is not contained in the Krylov subspace.

The following theorem relates true breakdown to the invariance of the sequence of subspaces in the inner
method for the operator Ag. Part four indicates that it is always known whether a breakdown is true or

lucky.
Theorem 2 The following statements are equivalent:

1. A true breakdown occurs in the inner GMRES iteration al step m;
2. range(AxVm-1) is an invariant subspace of Ag;
3. Agvy, € range(AgVim-1) ;

4. AgVn =V, Hyp, and H,, is a singular m x m matriz.

From theorem 1, one can already conclude that a true breakdown occurs if and only if Ay is singular over
K™(Ag; 7). From the definition of Ay we know null(Ax) = range(Ux) . We will make this more explicit
in the following theorem, which relates true breakdown to the intersection of the inner search space and the
outer search space.

Theorem 3 A true breakdown occurs if and only if

range(Vim) N range(Uy) # {0}.

The following theorem indicates that no true breakdown in the inner GMRES iteration can occur before
the total number of iterations exceeds the dimension of the Krylov space K(A;ro).

Theorem 4 Let m = dim(K (A;ry)) and let | be such that r, = Py(A)rg for some polynomial P, of degree
l. Then '
dim(K7* (Ag;m)) =3 +1 forj+l<m

and therefore no true breakdown occurs in the first j steps of the inner GMRES iteration.

We will now show how a true breakdown can be overcome. There are basically two ways to continue:
In the inner iteration: by finding a suitable vector to expand the Krylov space.
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In the outer iteration: by computing the solution of the inner iteration just before the true breakdown
and then by making one LSQR-step (see below) in the outer iteration.

We will consider the continuation in the inner GMRES iteration first. The following theorem indicates how
one can continue the generation of the Krylov space K(A;ry) if in the inner GMRES iteration a true
breakdown occurs.

Theorem 5 If a true breakdown occurs in the inner GMRES iteration then

Jc € range(Cx) : Axc € range(AxVim_1) (13)

This implies that one can try the vectors ¢; until one of them works. However, one should realize that the
minimization problem (8) is slightly more complicated.

Another way to continue after a true breakdown in the inner GMRES iteration is to compute the inner
iteration solution just before the breakdown and then apply an LSQR-switch (see below) in the outer GCR
iteration. The following theorem states the reason why one has to apply an LSQR-switch.

Theorem 6 Suppose one computes the solution of the inner GMRES iteration just before a true
breakdown. Then stagnation will occur in the next inner iteration, that is Tg41 L K (Ak+1; Tk+1). This will
lead to a breakdoun of the outer GCR iteration.

The reason for this stagnation in the inner GMRES iteration is that the new residual r¢,; remains in the
same Krylov space K(Ag;7x), which contains a u € range(Uy) . So we have to ‘leave’ this Krylov space.
We can do this using the so-called LSQR-switch, which was introduced in [15], to remedy stagnation in the
inner GMRES iteration. Just as in the GMRESR method, stagnation in the inner GMRES iteration will-
result in a breakdown in the outer GCR iteration, because the residual cannot be updated. The following
theorem states that this LSQR-switch actually works.

Theorem 7 If stagnation occurs in the inner GMRES iteration, that is if
minger™ [|[Te+1 — AkVindll2 = lIrk41ll2, then one can continue by setting (LSQR-switch)

Cky2 = ’YAk+1A Tk+1 and (14)
uker = (I — Qrs1)ATTip1, (15)
where v = ||cxs2|ls . This leads to
Tk+2 — Tk+1 - (r{+1ck+2)ck+2 and (16)
C Tkpz = Teel — (Thy1Ckr2)ure2, (17)

which always gives an.improved appmnmatzon Therefore, these vectors can be used as the start vectors for
a new inner GMRES iteration. . L

IMPLEMENTATION

We will now describe how to implement these methods efficiently (see also [2],(7]). First we will discuss the
outer GCR iteration and then the inner GMRES iteration. The implementation of a method like
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BICGSTAB in the inner iteration will then be obvious. Instead of the matrices Uy and Cy we will use in
the actual implementation the matrices Uy, Ck, Nk, Zx and the vector di which are defined below.

Definition 2 The matrices Ux, Cx, Nk, Zx and the vector di are defined as follows.

Ck = C_'ka, where (18)
N = diag(llaliyL ez - - ekl ), (19)
AU, = CiZy, (20)

where Zj is assumed to be upper-triangular. Finally di is defined by the relation

r = 1o — Crdi (21)

From this the approximate solution zj, corresponding to rg, is implicitly represented as
Tk = .'l:o+f]ka-1dk. (22)

Using this relation zj can be computed at the end of the complete iteration or before truncation (see next
section). The implicit representation of Uy saves all the intermediate updates of previous u; to a new ux1,
which is approximately 50% of the computational costs in the outer GCR iteration (see (11) and (12)).

GMRES as inner iteration. After k outer GCR iterations we have f]k,_C—'k and 7. Then, in the inner
GMRES iteration, the orthogonal matrix Vy,1 is constructed such that CT V41 =0 and

AV, = CkBm+Vm+1FIm (23)
Bn = NiC{AVn, (24)

This algorithm is equivalent to the usual GMRES algorithm, except that the vectors Av; are first
orthogonalized on Cj. From (23) and (24) it is obvious that AV, — CkBpm = AV = Vina1 Hn (cf.
theorem 1). Next we compute y according to (8) and we set (cf. (11) without normalization):

Gkl = VHny (25)

ﬁk+1 = me. (26)
This leads to Adg 4 = AVimy = Ci By + Vit 1Hmy = CeBmy + Ci41, 80 that if we set zxy1 = (Bmy)T 1)T
the relation AUk+1 Ck+1Zx41 is again satisfied. It follows from theorem 1 that the new residual of the
outer GCR iterations is equal to the final residual of the inner iteration rx 41 = rinner and is given by
Tk41 = Tk — Ck41, SO that dg1 = 1. Obviously the residual norm only needs to be computed once. If we
replace, in the formula above, the new residual of the outer GCR iteration 7541 by the residual of the inner
GMRES iteration :7"¢", we see an important relation that holds more generally Cx1 = Tx — rinner  This
relation is important, since in general (when other Krylov methods are used for the inner 1tera.t10n) Ck+1 OF
cx4+1 cannot be computed from uy 1, because ui; is not always computed explicitly, nor does a relation
like (25) always exist. Finally, we need to compute the new coefficient of N1, lEks1]lz! in order to satisfy
the relations in definition 2.

TRUNCATION

In practice, since memory space may be limited and since the method becomes increasingly expensive for
large k (the number of outer search vectors), we want to truncate the set of outer iteration vectors (i;) and
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(€;) at k = kmpaz, where kpqx is some positive integer. Basically, there are two ways to do this: one can
discard one or more iteration vector(s) (dropping) or one can assemble two or more iteration vectors into
one single iteration vector (assembly). We will first discuss the strategy for truncation and then its
implementation.

A strategy for Truncation. In each outer GCR iteration step the matrices U and Cj, are augmented with
one extra column. To keep the memory requirement constant, at step k = kjnaz, it is therefore sufficient to
diminish the matrices Uy, . and Cy,,., by one column. From (22) we have zx = zp + f]'ka' 'dk. Denote

€ =2 1d,. Consider the sequence of vectors (éx)- The components fk(i) of these vectors &, are the
coeflicients for the updates #; of the approximate solution z,. These coeflicients §k(i) converge to the limits
¢%) as k increases. Moreover, (fk(l)) converges faster than (§k(2)) and (§k(2)) converges faster than ({k(s))
etc. . Suppose that the sequence ({k(l)) has converged to E (1) within machine precision. From then on it
makes no difference for the computation of z; when we perform the update =g + £(Dé;. In terms of
direction vectors this means that the outer direction vector #; will not reenter as component in the inner
iteration process. Therefore one might hope that discarding the vector & will not spoil the convergence.
This leads to the idea of dropping the vector ¢;(= Ati;) or of assembling &; with & into & (say) when

5(1) f(l)

6(k) = | ——5—
el

<e _ ) (27)

where ¢ > 0 is a small constant. The optimal ¢, which may depend on k, can be determined from
experiments. When 6 (k) > € we drop &x,,,,_, or we assemble &, .., and &, (of course other choices are
feasible as well, but we will not consider them in this article). With this strategy we hope to avoid
stagnation by keeping the most relevant part of the subspace range(Cy) in store as a subspace of
dimension k — 1. In the next subsections we describe how to implement this strategy and its consequences

for the matrices Cx and Uk

Dropping a vector. Let 1 < j < k = kmaz. Dropping the column cJ is easy. We can discard it thhout
consequences. So let C},_; be the matrix Cy without the column &;. Dropping a column from Uy needs
more work, since zj is computed as rx = zg + Uka dx.. Moreover, in order to be able to apply the same
strategy in the next outer iteration we have to be able to compute zx,; in a similar way. For that purpose,
assume that zx can be computed as

Te = Th_1 =70 + Uk _1(Zk_1) di_1, (28)

where U}, and Z_, are matrices such that AU, =C,_,Z._, (see (20)). These matrices Uk ,and Z; 4
are easily computed by using the j-th row of (20) to eliminate the ]-th column of Cy, in (20). In order to
determine zj and d;_; we introduce the matrix Uy =A"1C, = UkZ . This enables us to write

. k o
zk = (zo + d,(cj)ﬂj) + ng:) Uj and Uj = (’&j - Zz,-jﬁ,-)/zjj. (29)
%) )
Substituting the equation for %; into the equation for x; we can compute zx from
d9 j-1
ok = (z0+ 2—a;) + > _(d) — d¥) z")- + Z dPu;. (30)
ij =1 i=7+1
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Notice that this equation precisely defines z; and dj_;:

zp = zo+ (P /2j;),

dﬁilf = df:) —d(zi;/2;;) fori=1,...,5—1and (31)
dﬁ:ll’ = df:“) fori=3j4,....k—1.

Now we have deallocated two vectors and we compute zx as in (28). We can continue the algorithm.

Assembly of two vectors. Let 1 < j <1< k= k. Again assembling &; and ¢ is easy. Let

€= (d;cj )Ej + dg)él) overwrite the I-th column of Ck. Then, let C}_; be this new matrix Cj without j-th
column. Analogous to the above, we wish to compute zj, as (28). For the purpose of determining the
matrices U},_, and Z}_,, let i = (dfcj )ﬁj + d,(cl)ﬁ,) and compute tgm) and tgm) such that

ZimUj + zZim W + t(lm)ﬁj = t(2m)17,, which gives tgm) = zlm(d,(cj) /dg)) — Zjm and tgm) = z;m/dg). This enables us
to write iy, = Y jo; Zimli, form=1,...,5 — 1 and

m
’l‘lm = Z Zimﬁi + tgm)ﬂ - tgm)ﬁj? fOr m = j’ ey k. (32)
t':jl,l
Substituting %; = (4; — 2{;11 2;j%;) /255, to eliminate @; from (32) we get 4,y = Y12, zim s, for
m=1,...,j—1and

(m) m

t , .

i+ 2—d = 3 (zim + g, + ™5 form=j+1,..., k. (33)
zjj - zjj

i3l

This equation determines the matrices {7 x—1 and Z; _,. In order to determine z and dy._1, note that z can
be computed as

k o
T =xg+ Z dg:)ﬁ{ + 4. (34)
i
Therefore xj is just zo and dj_, equals the vector di without the j-th element and the I-th element
overwritten by 1. Similarly, as before, we have deallocated two vectors from memory. The assembled
vectors 4 and ¢ overwrite 4; and ¢;. The locations of 4, and é; can therefore be used in the next step.
Finally, we remark that these computations can be done with rank one updates.

NUMERICAL EXPERIMENTS

We will discuss the results of some numerical experiments, which concern the solution of two dimensional

convection diffusion problems on regular grids, discretized using a finite volume technique, resulting in a

pentadiagonal matrix. The system is preconditioned with ILU applied to the scaled system; see [3],[9]. The
_first two problems are used to illustrate and compare the following solvers:

¢ (full) GMRES;

¢ BICGSTAB;

o GMRESR(m), where m indicates the number of inner GMRES iterations between the outer iterations;
GCRO(m), which is GCR with m adapted GMRES iterations as inner method, using Ag;
¢ GMRESRSTAB, which is GMRESR with BICGSTAB as inner method;
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Figure 3: Convergence history for problem 1 Figure 4: Convergence in time for problem 1

e and GCROSTAB, which is GCR with the adapted BICGSTAB as inner method, using Ag.

We will compare the convergence of these methods both with respect to the number of matrix vector
products and with respect to CPU-time on one processor of the Convex 3840. This means e.g. that each
step of BICGSTAB (and variants) is counted for two matrix vector products. We give both these
convergence rates because the main trade off between (full) GMRES, the GCRO variants and the
GMRESR variants is less iterations against more dot products and vector updates per iteration. Any gain
in CPU-time then depends on the relative cost of the matrix vector multiplication and preconditioning
versus the orthogonalization cost on the one hand and on the difference in iterations on the other hand. We
will use our third problem to show the effects of truncation and compare two strategies.

Problem 1. This problem comes from the discretization of
—(ugz + Uyy) +bug +cuy =0

on [0,1] x [0, 4], where
bz, y) = 100 for 0<y<1l and 2<y<3
'Y)=3 —100 for 1<y<2 and 3<y<4

and ¢ = 100. The boundary conditions areu=1ony =0, u=0o0ny =4, w=0onz=0and v =00n
z = 1, where u’ denotes the (outward) normal derivative. The stepsize in z-direction is 1 /100 and in
y-direction is 1/50.

In this example we compare the performances of GMRES, GCRO(m) and GMRESR(m), for m = 5 and
m = 10. The convergence history of problem 1 is given in Fig. 3 and Fig. 4. Fig. 3 shows that GMRES
converges fastest (in matrix vector products), which is of course to be expected, followed by GCRO(5),
GMRESR(5), GCRO(10) and GMRESR(10). From Fig. 3 we also see that GCRO(m) converges smoother
and faster than GMRESR(m). Note that GCRO(5) has practically the same convergence behavior as
GMRES. The vertical ‘steps’ of GMRESR(m) are caused by the optimization in the outer GCR iteration,
which does not involve a matrix vector multiplication. We also observe that the GMRESR(m) variants
tend to lose their superlinear convergent behavior, at least during certain stages of the convergence history.
This seems to be caused by stagnation or slow convergence in the inner GMRES iteration, which (of
course) essentially behaves like a restarted GMRES. For GCRO(m), however, we see a much smoother and
faster convergence behavior and the superlinearity of (full) GMRES is preserved. This is explained by the
‘global’ optimization over both the inner and the outer search vectors (the latter form a sample of the
entire, previously searched Krylov subspace). So we may view this as a semi-full gmres. Fig. 4 gives the
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convergence with respect to CPU-time. In this example GCRO(5) is the fastest, which is not surprising in
view of the fact that it converges almost as fast as GMRES, but against much lower costs. Also, we see
that GCRO(10), while slower than GMRESR(5), is still faster than GMRESR(10). In this case the extra
orthogonalization costs in GCRO are outweighed by the improved convergence behavior.

Problem 2. This problem is taken from [14]. The linear system comes from the discretization of
—(aug)s — (auy)y +buz = f

on the unit square, with b = 2exp2(z? + yz). Along the boundaries we have Dirichlet conditions: u =1 for
y=0,z=0and z =1, and u = 0 for y = 1. The functions a and f are defined as shown in Fig. 8; f =0
everywhere, except for the small subsquare in the center where f = 100. The stepsize in z-direction and in
y-direction is 1/128.

If Fig. 5 a convergence plot is given for (full) GMRES, GCRO(m) and GMRESR(m). We used m = 10 and
m = 50 to illustrate the difference in convergence behavior in the inner GMRES iteration of GMRESR (m)
and GCRO(m). GMRESR(50) stagnates in the inner GMRES iteration whereas GCRO(50) more or less
displays the same convergence behavior as GCRO(10) and full GMRES. For the number of matrix vector
products, it seems that for GMRESR(m) small m are the best choice.
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In Fig. 6 a convergence plot is given for (full) GMRES, BICGSTAB, and the the BICGSTAB variants,
GMRESRSTAB and GCROSTAB. To our experience the following strategy gave the best results for the
BICGSTAB variants:

o For GMRESRSTAB we ended an inner iteration after either 20 steps or a relative improvement of the
residual of 0.01;

e For GCROSTAB we ended an inner iteration after either after 25 steps or a relative improvement of the
residual of 0.01.

The convergence of GMRESRSTAB for this example is somewhat typical for GMRESRSTAB in general
(albeit very bad in this case). This might be explained from the fact that the convergence of BICGSTAB
~ depends on a ‘shadow’ Krylov subspace, which it implicitly generates. Now, if if one restarts, then
'BICGSTAB also starts to build a new, possibly different, ‘shadow’ K Krylov subspace. This may lead to
erratically convergent behawor in the first few steps. Therefore, it may happen that, if in the inner
 iteration BICGSTAB does not converge (to the relative prec1s1on\ the ‘=olution’ of the inner iteration is
‘not very good and therefore the outer iteration may not give much improvement either. At the start the
same more or less holds for GCROSTAB; however after a few outer GCR iterations the ‘improved’
operator (Aj) somehow yields a better convergence than BICGSTAB by itself. This was also observed for
more tests, although it also may happen that GCROSTAB converges worse than BICGSTAB.

In Fig. 7 a convergence plot versus the CPU—tune is given for GCROSTAB, BICGSTAB, GCRO(10) and
GMRESR(10). The fastest convergence in CPU-time is achieved by GCROSTAB(10), which is =~ 20%
faster than BIQGSTAB notwithstanding the extra work in orthogonalizations. We also see, that although
GCRO(10) takes fewer iterations than GMRESR(10), in CPU-time the latter is faster. So in this case the
decrease in iterations does not outweigh the extra work in orthogonalizations. For completeness we mention

that GMRESRSTAB took almost 15 seconds to converge, whereas GMRES took almost 20 seconds.

Problem 3. The third problem is taken from [10]. The linear system stems from the discretization of the
partial differential equation
—Ugzg — Uyy + 1000(zus + yuy) + 10u = f

on the unit square Wlth Z€ero Du‘lchlet bounda.ry conditions. The stepsuze in both z-direction and
y-direction is 1/65. The nght—hand side is selected once the matrix is constructed so that the solution is
known to be z = (1 1,...,1)T. The zero vector was used as an initial guess

In Fig. 9 we see a plot of the convergence hlstory of full GMRES, GMRESR(5), GCRO(5) and
GCRO(10,5) for two different truncation strategies, where the first parameter gives the dimension of the
outer search space and the second the dimension of the inner search space. The number of vectors in the
outer GCR iteration is twice the dimension of the search space. For the truncated version:

e ‘da’ means that we took € = 1073 and dropped the vectors i; and & when § (k) < € and assembled the
vectors ig and 4o as well as the vectors & and ¢19 when & (k) > ¢

e ‘tr’ means that we dropped the vectors iy and & each step (e = 0, see also [16]).

Notice that GCRO(5) displays almost the same convergence behavior as full GMRES. GMRESR(5)
converges eventually, but only after a long period of stagnation. The truncated versions of GCRO(5) also
display stagnation, but for a much shorter period. After that the ‘da’ version seems to converge as
superlinear, whereas the ‘tr’ version still displays periods of stagnation, most notably at the end. This
indicates that the ‘da’ version is more capable of keeping most of the ‘convergence history’ than the ‘tr’
version. This kind of behavior was seen in more tests: ‘assembled’ truncation strategies seem to work
better than just discarding one or more iteration vectors.

In Table 1 we give the number of matrix vector products, the number of memory vectors and the
CPU-time on a Sun workstation. From this table we see that GCRO(5) is by far the fastest method and
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Figure 9: Convergence history for problem 3

uses about half the amount of memory vectors full GMRES and GMRESR(5) use. More interesting is that
GCRO(10,5) ‘da’ converges in the same time as GMRESR(5), but uses only one third of the memory space.

CONCLUSIONS

We have derived from the GMRESR, inner-outer iteration schemes a modified set of schemes, which
preserve the optimality of the outer iteration. This optimality is lost in GMRESR since it essentially uses
‘restarted’ inner GMRES iterations, which do not take advantage of the outer ‘convergence history’.
Therefore, GMRESR may loose superlinear convergence behavior, due to stagnation or slow convergence of
the inner GMRES iterations.

[| Method | Mat-Vec | Memory Vectors | CPU-time |
GMRES 77 77 21.3
GMRESR(5) 188 81 18.5
GCRO(5) 83 39 9.4
GCRO(10,5) ‘da’ 150 25 18.3
GCRO(10,5) tr’ | 244 25 30.3

Table 1: Number of matrix vector products, number of memory
vectors and CPU-time in seconds for problem 3
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In contrast, the GCRO variants exploit the ‘convergence history’ to generate a search space that has no
components in any of the outer directions in which we have already minimized the error. For GCRO(m)
this means we minimize the error over both the inner search space and a sample of the entire previously
searched Krylov subspace (the outer search space), resulting in a semi-full GMRES. This probably leads to
‘the smooth convergence (much like GMRES) and the absence of stagnation, which may occur in the inner
GMRES iteration of GMRESR. Apparently the small subset of Krylov subspace vectors that is kept
approximates the entire Krylov subspace that is generated, sufficiently well. For both GMRESR(m) and
GCRO(m) it seems that a small number of inner iterations works well.

We may also say, that the GCRO variants construct a new (improved) operator (of decreasing rank) after
each outer GCR iteration. Although there is the possibility of breakdown in the inner method for GCRO,
this seems to occur rarely as is indicated by theorem 4 (it has never happened in any of our experiments).

With respect to performance of the discussed methods we see that GCRO(m) (almost) always converges in
fewer iterations than GMRESR(m). Because GCRO{m) is on average more expensive per iteration, this
does not always lead to faster convergence in CPU-time. This depends on the relative costs of the matrix
vector product and preconditioner w.r.t. the cost of the orthogonalizations and the reduction in iterations
for GCRO(m) relative to GMRESR(m). Our experiments, with a cheap matrix vector product and
preconditioner, show that already in this case the GCRO variants are very competitive with other solvers.
However, especially when the matrix vector product and preconditioner are expensive or when not enough
memory is available for (full) GMRES, GCRO(m) is very attractive. GCRO with BICGSTAB also seems
to be a useful method, especially when a large number of iterations is necessary or when the available
memory space is small relative to the problem size. GMRESR with BICGSTAB does not seem to work so
well, probably because, to our observation, restarting BICGSTAB does not work so well.

We have derived sophisticated truncation strategies and shown by example that superlinear convergence
behavior can be maintained. From our experience, the ‘assembled’ version seems to have the most promise.

Acknowledgements. The authors are grateful to Gerard Sleijpen and Henk van der Vorst for
encouragement, helpful comments and inspiring discussions.
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IMPLEMENTING ABSTRACT MULTIGRID OR MULTILEVEL METHODS *

Craig C. Douglas
Department of Computer Science
Yale University
New Haven, Connecticut

SUMMARY

Multigrid can be formulated as an algorithm for an abstract problem that is independent of the
partial differential equation, domain, and discretization method. In such an abstract setting, problems
not arising from partial differential equations can be treated also (c.f. aggregation-disaggregation
methods). Quite general theory exists for linear problems, e.g., C. C. Douglas and J. Douglas, SIAM
J. Numer. Anal., 30 (1993), pp. 136-158.

The general theory was motivated by a series of abstract solvers (Madpack). The latest version (4)
was motivated instead by the theory. Madpack now allows for a wide variety of iterative and direct
solvers, preconditioners, and interpolation and projection schemes, including user callback ones. It
allows for sparse, dense, and stencil matrices. Mildly nonlinear problems can be handled. Also, there
is a fast, multigrid Poisson solver (two and three dimensions).

The type of solvers and design decisions (including language, data structures, external library
support, and callbacks) are discussed here. Based on the author’s experiences with two versions of
Madpack, a better approach is proposed here. This is based on a mixed language formulation (C and
Fortran+preprocessor). Reasons for not just using Fortran, C, or C++ are given. Implementing the
proposed strategy is not difficult.

1. INTRODUCTION

The term abstract multigrid was coined in [1]. This refers to theory which is quasi-independent of
the elliptic boundary value problem. The dependence is introduced by assuming that the (discretized)
problem satisfies a very small number of hypotheses which contribute simple expressions to the
convergence rate formula. The theory in [1] is general enough to apply to nonnested solution spaces
and includes example boundary value problems on general domains, with variable coefficients, and
finite difference and finite element discretizations.

The concept of abstract multigrid was pushed to the extreme in [2], where a general theory for
linear problems is presented with virtually no constraints on the origin of the problems.

Abstract multigrid is defined in §2. Two implementations of abstract multilevel methods (see [3]
and [4]) are discussed in §3. A discussion of what might be the right set of languages to implement

*This work was supported in part by IBM and the Office of Naval Research.

EY,

127

INTENTIONALLY amm(’;

PRECEDING PAGE BLANK NOT FILMED fpace



abstract multilevel methods is in §4. Finally, some conclusions are drawn in §5.
2. ABSTRACT MULTIGRID

Assume we are solving some problem, possibly derived from a partial differential equation, possibly
not. Assume further that by various means a sequence of (linear) problems

Ajz;=b;, 1<j<k, (1)
are formed which approximate the real problem
Arzy = by, (2)

where z;,b; € M;, 1 < j < k. Typically, M; is a real or complex vector space when actually com-
puting the solution to the problem. Frequently,

dim(Mj) ~ C’dim(Mj_1), C>1.
There are typically three mappings between the neighboring solution spaces.

Rjy Qi M; > M, 2<5<k,
Pj: M_,'—*Mj+1, ].SjSk—l.

The R; and Q; are restriction (or projection) matrices and the P; are prolongation (or interpolation)
matrices. Frequently, P; = cRg‘_l, where ¢ € IR. The matrices A; and A;_; are typically related
through the relation

Aj_1=0Q;A;Pi1, 2<j<k

The Galerkin form of multigrid requires that Q; = P]_;. The Q; are frequently injection matrices
when a finite difference discretization is applied to a partial differential equation.
A multilevel correction algorithm is simply defined by

Algorithm MGC ( lev7 {Ajrmj?bj},,;:l: {PJ };:117 {RJ}§=2 )

L Tlev SOlve‘rlev(Alem Tiev blev)

2. If lev > 1, then repeat 2a-2d until some condition is met:
2a. Tpey-1 + 0, biev-1 — Riev (blev - Alevxlev)
2b. MGC ( lev — 11 {Ahzj’bj}?:l? {PJ}f;}v {RJ'}§=2 )
2c. Tiey ¢ Tley + Plev—lzlev—l
2d. Ziey +— Solveriey,(Aiev; Tiev, biev)

A common condition in step 2 is to do steps 2a—2d some specified number of times (e.g., 0 for one
way multigrid, 1 for a V Cycle, or 2 for a W Cycle).

On the coarsest level, lev = 1, the solver is frequently some flavor of Gaussian elimination (e.g., a
sparse one). Common solvers on the other levels include relaxation methods (e.g., point, line, plane,
or zebra Gauss-Seidel) and conjugate direction methods (e.g., conjugate gradients or residuals, CGS,
GMRES, or Orthomin). The latter class of iterative methods is most effective on highly nonuniform
meshes with a significant difference between the largest and smallest mesh spacing or diameter on a
level.

A general algorithm that provides very good initial guesses is the nested iteration one:
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Algorithm NIC ( lev, {Aj,:cj,bj}’;=1, {Pj}f;ll, {72,-};?;2 )
1. MGC (1, {4;,z;,b;}5, {P}52i, {Ri¥os,)
2. Do steps 2a-2b with lev =2,.-.  k:

2a. Tley Plev~lxlev—1

2b MGC (l@'l), {AJ)x_ﬂb)}_’;z]; {PJ}.I;;II, {RJ}§=2 )

A one way multilevel algorithm means that Algorithm MGC never performs any portion of its step 2
as part of its use by Algorithm NIC. Most complexity arguments showing that multigrid is of optimal
order are based on Algorithm NIC, not Algorithm MGC.

For nonlinear problems, there are two standard approaches: the Full Approximation Scheme
(FAS) and damped Newton multilevel. FAS is similar to Algorithm MGC, but changes two lines:

(FAS)
2a. Tley-1 Rlev Tley, blcv,—l, — Rlev(blev - Alevxlev) - Alev—lxlev——l
(FAS
2c. Tiey ¢ Tiey + Plev—l(xlev—l = v ?ljlev)

Note that in many situations RngS) = Riey- Also, the operator A; is not linear anymore, but involves
function evaluations.

The damped Newton algorithm is a modification of Algorithm NIC. Before each reference to
Algorithm MGC, a Jacobian is formed and a damped Newton step is performed. The last Jacobian
on a level is saved for use in subsequent multilevel correction steps.

The difference between these two nonlinear approaches is easy to categorize. FAS uses a nonlinear
iterative method (e.g., nonlinear Gauss-Seidel) while damped Newton uses standard linear solvers.
When evaluating the nonlinear function is inexpensive, FAS usually produces an approximate solution
faster than the damped Newton multilevel method. However, when the function evaluations are
expensive, the damped Newton multilevel method usually produces an approximate solution faster
than FAS.

Note that in Algorithms MGC and NIC, there are only two obvious components per level: the
solver and the methods for passing information between levels. There are other components hidden
by this formulation: a possible set of preconditioners for use by the solvers, a method for computing
a matrix-vector product for some set of storage formats, and a set of discretization methods in the
partial differential equation case.

For problems not arising from partial differential equations, the only components in Algorithm
MGC that can be optimized are the solvers and the restriction matrices Q; and R;. Both theory and
practical experience demonstrate rather conclusively that finding better Q; matrices is far superior
to trying to find an optimal iterative method as the solver (e.g., see [5]).

For partial differential equation problems, using better discretization methods usually makes a
bigger impact on the convergence rate than searching for a slightly better interpolation scheme or
iterative solver. There are exceptions to this for trivial problems (e.g., Laplace’s equation on a square
with uniform grids).

3. MADPACK

The term madpack is a mnemonic for m ultigrid (multdevel), aggregation-disaggregation package.
It started as a compact set of subroutines for solving problems of the form (1)—~(2). The first two
versions were released in 1986 and the fourth in 1992. All versions have been written using numerous
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macros to hide data structures and improve the readability. Currently, version 2 is available through
Netlib and MGNet (see [6] and [7] for a description of MGNet). Version 2 is in the public domain.
Version 4 is not really compatible with version 2 and is also owned by IBM. It is available through
IBM’s Internet anonymous ftp server and MGNet. All announcements and bug fixes for version 4
are distributed through MGNet.

Version 2 is discussed in §3.1. Version 4 is discussed in §3.2. A number of issues that these two
versions raise are discussed in §4.

3.1. MADPACK, VERSION 2

Version 2 [8] was originally written in an extended flavor of Ratfor. A translator converted this
to Fortran-77. This, in turn, is compiled by whatever compiler is available on a given machine. After
determining that on some machines (e.g., SUN workstations in 1986) C versions of the subroutines
ran up to 40% faster than the Fortran-77 equivalent, the entire code was ported to C. Including
comments, there are only 15001600 lines in each language version. All three language versions are
distributed.

Version 2 consists of 9 subroutines:

Routine | Description

klmg Algorithm MGC

klni Algorithm NIC

klax matrix-vector multiply

kldsnf | factor matrices

kldsss | forward/backward solves

klres compute residual

klsgs Symmetric Gauss-Seidel

klsgsc Preconditioned conjugate gradients
klsgsm | Preconditioned Orthomin(1)

The first two subroutines, klmg and kIni, are meant to be the only user callable subroutines, but any
can be called directly.

Version 2 supports an odd flavor of sparse matrix storage (see [9]) in the solver routines. The
matrices A; are assumed to have a symmetric nonzero structure, independent of whether or not
A; = A'JI.'. This means that in some cases, a small number of zeroes are actually stored in the sparse
matrix representation of A;. The main diagonal, the nonzero elements of the columns of the upper
triangular part of A;, and the nonzero elements of the rows of the lower triangular part of A; are
stored independently (the lower part only if A; is nonsymmetric). This allows for only half of the
row or column indices to be stored due to the symmetry of the nonzero structure. It also allows for
numerous computational simplifications and some tricks in reducing costs in the direct and iterative
solvers (see [10]).

For restriction and prolongation matrices, two additional storage formats are supported. A general
sparse matrix format, as implemented in the second Yale Sparse Matrix Package (see [11]) is useful on
irregular grids. A stencil format is extremely efficient for uniform or tensor product grids. Typically,
r; + ¢ storage elements are used, where r; —Rows(R;) and c is a small natural number.
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Table 1: Solvers and preconditioners

Solver Preconditioner
None User ILU Diag SGS SSOR

NoSolver * * * * * *
User any any ¥ * * *
Factor GD * * * * *
Solve GD X * * * *
Symmetric Gauss-Seidel | G * * * * *
Gauss-Seidel GSD * * * * *
Gauss-Seidel, red-black | GSD * * * * *
Conjugate gradients GSD GSD G G G G
Minimum residuals GSD GSD * * G *
CGS G * G G * G
CGSTAB G * G G * G
GMRES G * G G * G

* = Error

G = General sparse matrices

S = Stencil matrices

D = Dense matrices

any = any format

Only Algorithms MGC and NIC are included. There is no support for nonlinear or time dependent
problems. Version 2 has been imbedded in other people’s nonlinear and time dependent codes,
however. There is also no user callback mechanism, so that if the user has some special solver,
preconditioner, or change of level subroutine, the source code for version 2 has to modified.

3.2. MADPACK, VERSION 4

This is a complete redesign and rewrite of Madpack. It is incompatible with version 2 in numerous
ways. This is actually two quite distinct codes, DAMG [3] and DPMG [4]. DAMG is an abstract
solver for linear and mildly nonlinear problems (FAS is supported). DPMG is a fast Poisson solver
for two and three dimensional problems on simple uniform or tensor product grids.

DAMG supports dense, stencil, and general sparse matrix formats (this time, the more common
first Yale Sparse Matrix Package [12] format was used) in the computational kernels. The dense case
rarely occurs in solving partial differential equations; it is more common when solving aggregation-
disaggregation problems (see [5]). Table 1 contains a summary of the solvers and preconditioners
supported in the IBM version.

Unlike version 2, version 4 requires an external library of solvers (there are some solvers provided,
but not many). What is distributed by IBM runs only on machines with their proprietary engineering
and scientific subroutine library. Currently, this library only runs on IBM mainframes and RISC
System /6000 workstations. Since DAMG was originally written on a machine that is not supported
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Table 2: Level independent information data structure

iparm(t)
i | Symbolic name | Definition
1 | mgfn Which multilevel algorithm
2 | R2infm Second dimension of infm array
3 | bxsize Length of b and z arrays
4 | lndm Length of dm array
5 | lnim Length of im array
6 | Injm Length of jm array
7 | levelf Index of the finest level
8 | levelc Index of the coarsest level
9 | startl Index of the starting level
10 | presva Preserve coarsest level’s matrices or not
11 | lastdm Index of last element in dm in use
12 | lastim Index of last element in 4m in use
13 | lastjm Index of last element in jm in use
14 | info Control of debugging information
15 | restart Continued computation indicator
20 | assist When all else fails

by this library, there is obviously a version which uses other libraries, e.g., LAPACK and the first
Yale Sparse Matrix Package. Interfacing DAMG to other libraries is now fairly painless.

DAMG accepts three external subroutine arguments in case the users want to use their own
solver(s), preconditioner(s), or change of level subroutine(s). In retrospect, there should have been
a fourth for matrix-vector multiplies. These features are used extensively in DPMG to avoid storing
matrices.

Both DAMG and DPMG are written in the same extended Ratfor as is version 2. Only the
Fortran-77 translation is distributed by IBM, however. The codes assume double precision real data.
Changing to single precision only requires changing one line of a file included by each of the Ratfor
codes. Changing to complex data is only slightly harder.

DAMG can be restarted after it returns. This allows for coarse levels to be removed from the
computational flow. It also allows an external adaptive grid refinement procedure to work with
DAMBG to add finer levels.

Data is passed to and from DAMG in the standard awkward style imposed by Fortran-77’s
limitations. Matrices and vectors are piled into a set of five (integer and real) vectors. As a substitute
for the more natural pointer data type, indices are stored in information data arrays, indexed by the
level number (see Tables 2—4). A language that supports more reasonable data structures, pointers,
and dynamic memory allocation and freeing would simplify this.

Table 2 contains information which is level independent. This includes the length and the index
of the last used element of certain vectors, which multilevel algorithm to start with, the indices of
the finest, coarsest, and starting levels, how much debugging information to print, and whether this
is a restart of an earlier computation.

Table 3 contains information relevant to the computational algorithms which is level dependent.
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Table 3: Level dependent algorithm information data structure

infalg(i,j) onlevel j

it | Symbolic name | Definition
1| Solver Which solution method
2 | SolverlIters Iterations of Solver
3 | Precond Which preconditioning method
4 | MGlters Iterations of Algorithm MGC or MGFAS
5 | Nllters Iterations of Algorithm NIC or NIFAS
6 | IdtXB Index of first element of b, or z; in b or z
7T{NXB Number of elements in b; and z;
8 | Colors Number of colors in a multicolor ordering
Table 4: Matrix information data structure
infm(i, k,j) on level j
i/k 1 2 3 4 5

1 | AType RType PType NIPType FASRType

2 | ACols RCols PCols NIPCols FASRCols

3 | ARows RRows PRows NIPRows FASRRows

4 | ADiml RDiml PDiml NIPDiml FASRDiml

5 | ADim2 RDim2 PDim2 NIPDim2 FASRDim?2

6 IdxA IdxR IdxP IdxNIP  IdxFASR

7 | IdxIA TIdxIR IdxIP IdxINIP IdxIFASR

8 | IdxJA IdxJR IdxJP IdxJNIP IdxJFASR

Table 5: How matrices are chosen for changing levels

Wanted

Order of selection

Rj, Pl and NIPT,,

Pj, R};—l? and NIPJ
NIPj, Pj, and R?+1

FAS
RS9, Ry, L., and NTPT,,
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This includes the solver and preconditioner pairing, how many iterations of the algorithms to use on
this level, the index into the solution and right hand side vectors for z; and b;, and their lengths.

When changing levels, it is very rare that R;, P;, NIP;, and RgFAS) will all be defined. NIP;
corresponds to a special version of P; in step 92a in Algorithm NIC (see §2). Usually only one or two
of these will be defined. Further, the matrices are typically related to each other in very particular
ways mathematically. An effort has been made to allow users of DAMG the option of generating
only one matrix when it can be re-used or is the transpose of another matrix. DAMG determines
which operation is wanted and then determines from information in the (three dimensional) infm
data structure (see Table 4) how to change levels. Table 5 contains the order of choice, as determined
by which matrix is wanted. The user callback for changing levels is the last choice unless the matrix
type specifies doing this.

DPMG uses DAMG to do multileveling. Specialized solvers, interpolation, and projection sub-
routines are used throughout the computations, however. This means that DPMG does not store
matrices normally, thus saving enormous amounts of memory which can be used instead for solving
much larger problems. DPMG solves

—Au = binQ,
u = goon 0%, (3)
u, = ¢ on Iy,

where 6{20 U 6Q1 = 90N and BQO N 391 = @
This is discretized on grids _

In essence, linear systems of the form (1)(2) are solved approximately for a sequence of grids Q;.
The vectors z; and b; can be thought of as “grid functions” on (,. The values of b, go, and g; on Q,
are stored in b; (multiplied by the square of the mesh spacing when a uniform mesh is used). The
values of go on 8§ and an initial guess to the solution u in £ U 8); are stored in z; before the call
to DPMG. DPMG uses a central difference discretization of Poisson’s equation, even at Neumann
boundary points. Dirichlet boundary points are not eliminated a priori.

Interpolation is either bilinear, trilinear, or a fourth order method based on (3). The latter uses
the difference operator, similar to a Gauss-Seidel iteration with a three color ordering and a rotated
operator, to improve the order of the interpolation (see [13]).

The three restriction methods are based on stencils. These are described in detail in [14]. The two
second order methods are based on [1,2, 1] and [1,4, 1] weightings in one dimension. Tensor products
are used to generate the stencils in higher dimensions. The fourth order stencil is an average of the
[1,4, 1] tensor product stencil and point injection.

Only Algorithms MGC and NIC are options. The solvers are sparse Gaussian elimination and
Gauss-Seidel with either the natural or red-black orderings.

DPMG was designed to run very fast on four quite different architectures:

1. IBM mainframes with vector units.

2. Conventional vector machines.

3. Nonvector machines with multiply-add hardware chaining.
4. Nonvector machines with no fancy hardware.
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An example of 2 above is a Cray, an example of 3 is an IBM RISC System /6000 workstation, and an
example of 4 is a SUN workstation or a PC.

The Gauss-Seidel with the natural ordering subroutines were rewritten in IBM mainframe vector
assembler. These routines are always faster than the Fortran equivalents no matter what size vectors
are used. As an interesting aside, a version was produced that completely vectorizes by using an
odd re-interpretation of how to compute the updates based on the trailing vector elements that
normally do not vectorize. This is described in [15]). The trick does not work in Fortran, C, or C++
unfortunately.

The usual philosophy for vectorizing Gauss-Seidel is to use a red-black ordering. In addition, this
allows the interpolation subroutines to ignore half of the fine grid points. However, the red-black
ordering has an unfavorable feature. The right hand side and approximate solution vectors pass
through cache twice per iteration. Only if a solver is written in a blocked by the cache size manner
can this be alleviated. Due to the boundary conditions in (3) and the fact that the matrices are not
stored in DPMG, this makes things overly complicated to program. Hence, DPMG uses a traditional
implementation for the red-black subroutines.

While the multilevel convergence properties of red-black Gauss-Seidel are better than the naturally
ordered one, both solvers provide about equal performance when using Algorithm NIC and a V Cycle.

4. LANGUAGE ISSUES

In this section, advantages and disadvantages of Fortran, C, and C++ will be discussed in the
context of an abstract multilevel solver. A mixed solution will be proposed.

4.1. FORTRAN

In §3.2, the disadvantages of Fortran-77 in terms of data structures were discussed. There is no
conceivable way to get around this. Even using macros or Ratfor only helps so much. The real
problem is that users of the package still have to initialize the data structures. They are not likely
to use either my macros or Ratfor.

DAMG uses scratch storage in its solvers. Predicting the amount needed for each (solver, precon-
ditioner) pair is an art which no user should ever have to master. Worse, the formulas given for some
popular sparse matrix iterative solvers are wrong (predicting less memory than is required). For all
of the solvers used in §3, the amount of scratch storage can be written in terms of N (the number or
rows or columns), NZ (the number of nonzeroes in A;), and a constant:

Neer =Ch N+ Cnz  NZ + Cosira. (4)

While default values can be used, the user should be able to override these.

However, there are some areas where Fortran shines. For one, real and complex data types of
various word lengths are part of the language. So, by using a simple preprocessor (e.g., /lib/cpp or
m4) that is available on most computer systems used by people who do scientific computation, one
source code can be maintained, even if multiple subroutine names are generated, one per data type
supported. For example, in the Ratfor source code for DAMG, subroutine mgal is referenced by

Namelt(mgal)
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Table 6: New Matrix Structure
struct Matrix { int  MatrixType; /* the matrix type */

int  MatrixCols; /* number of columns */

int  MatrixRows;  /* number of rows */

int  MatrixLDim;  /* leading dimension for dense matrices */
void *MatrixCoeffs; /* Pointer to matrix elements */

int *MatrixIA; /* Pointer to IA elements */

int  *MatrixJA; /* Pointer to JA elements */

J&

Namelt prepends the letter d (double real), s (single real), z (double complex), or ¢ (single complex)
depending on the definition of a macro, FLOAT.

Another area where Fortran does well is in optimizing code for certain classes of machines, particu-
larly ones with vector units. The author naively assumed vector machines would go like the dinosaurs
with the advent of superscalar, very fast workstations. Unfortunately (or fortunately depending on
your view), vector units are being glued onto superscalar workstations by several manufacturers.
While some C compilers have made serious inroads on producing very high-quality code, Fortran still
holds some advantages in this case.

4.2. C

This language has an obvious disadvantage since complex and double complex are not a part of
the language. While either of these can be defined as a structure, computing with them is inexcusably
awkward. In particular, maintaining a single set of solvers for real and complex data means writing
a set of weird macros to do floating point arithmetic. This is unacceptable.

However, not all of DAMG’s or DPMG's subroutines are solvers. In fact, the multilevel algorithm
or choose which solver to call subroutines are really doing bookkeeping, not floating point arithmetic.
For these subroutines, C provides all of the necessary features to dramatically simplify the entire
calling sequence and these subroutines. Just being able to dynamically allocate and free memory
would reduce the user’s frustration level with trying to guess how much memory to pass to DAMG
for scratch storage.

C can easily save addresses of objects, e.g., of subroutines or data objects, in complicated data
structures. Hence, routines can be called incrementally to pass very complex data objects to an
implementation of an abstract multilevel algorithm without any one call being very complicated.
This reduces the aggravation of using a complex program considerably.

43. C++

Many of the positive comments about C apply directly to C++. Classes can be constructed
instead of structures. Further, C++ usually comes with a complex class (but not necessarily in both
single and double precision), alleviating C’s worst drawback.

One of C++'s strongest design features is the ability to design classes abstractly. At run time, the
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Table 7: External subroutine information structure

struct  ExternSubr {

int  (*Subr)(); /* Pointer to integer function */

int  *IParms; /* Pointer to integer parameters */

void *FParms; /* Pointer to floating point parameters */
float CN; /* See (4) */

float CNZ; /* See (4) */

float Cextra; /* See (4) */

int  SaveScr /* Save scratch areas between calls? */
void **Scrs /* Vector of pointers to scratch areas */
int  *NScrs /* Vector of lengths of scratch areas */

}

correct version of some virtual routine is accessed. This feature, while useful, is overkill in the context
of abstract multigrid solvers. The data type void * in C, a pointer to any data type, is sufficient to
overcome many of the reasons why C++ would be useful in this context (see §4.4).

A drawback to using C++ is that there is frequently a lot of overhead hidden from the user.
This makes C++ programs run unnecessarily slower than the equivalent C or Fortran programs.
Interfacing C++ programs to Fortran programs is sometimes challenging, too.

A more serious drawback is that C++ has not yet been standardized. It is evolving with major
new versions coming out yearly. This would not be so bad except that features are sometimes dropped
or changed in incompatible ways in newer versions of the language. For someone who wants to write
a code once and then never have to touch it again, this is not a good point in C++'s favor.

4.4. C AND FORTRAN: MIXED LANGUAGE PROGRAMMING

My personal belief is that mixing Fortran-+preprocessor and C is the best choice now. Implement
Algorithms MGC and NIC in C and implement the computational solvers in FORTRAN+preprocessor.
Numerous people who compute only know one language well and are not comfortable normally with
a mixed language set of programs. An interface is described at the end of this section to let these
people use what is proposed.

Suppose that we make no assumption about the language of a solver or preconditioned subroutine,
other than it really can be called from C. Then we do not know if it can dynamically allocate memory.
Hence, some mechanism must be defined for passing a block of memory. One way is to define a
structure for externally called subroutines, e.g., Table 7. The subroutine is expected to return some
indication of whether or not it worked or produced an error. The IParms and FParms are integer
and floating point vectors containing information that the specific subroutine actually needs. Setting
CN=CNZ=Cextra=0 could signify “use the defaults.” Note that only one ExternSubr structure has
to be created per subroutine. In this definition, Subr is a pointer (or external reference) to an integer
valued function with a fixed set of arguments. By providing an include file with an abstract solver,
a set of default ExternSubr structures can be given to the user (see Table 1).

Consider Table 4. A single structure can be defined that defines everything in a column of Table
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4, so that information about matrices can be made easier to define. Also, pointers to the actual
floating point and integer vectors or matrices can be defined (instead of indices into a messy vector),
placing all of the relevant information in one place (see Table 6).

Information that is in both Tables 3 and 4 can be re-arranged into a single data structure as in
Table 8. A NULL pointer can be used to indicate the lack of existence of a matnx.

An implementation of Algorithm MGC can then use the information in LevInfo and the ExterSubr
structures to first allocate scratch space (if necessary), then call the solver. Assume Ip is a pointer
to level j’s LevInfo structure, that lap is a pointer to Ip — A;’s Matrix structure, Ips is a pointer to
lp —solver’s ExternSubr structure, and lpp is a pointer to either lp —precond’s ExternSubr structure
or an empty one. Then the solver is called using the following:

iret = lps —Subr( dtype, lpp —Subr, lp —Solverlters, lp —SolverRNorm,
Ip —matrix_vec, lap —MatrixType, lap —MatrixRows,
lap —MatrixCols, lap —MatrixCoeffs, lap —MatrixIA,
lap —MatrixJA, lp — X, lp — B, Ips —1Parms,
lps —FParms, resid, scrs, nscrs, scrp, nscrp, oldscr );

Here scrs and scrp are pointers to scratch storage (with lengths nscrs and nscrp) for use by the solver
and the preconditioner subroutines. Whether or not this is the same set of scratch areas as a previous
call is indicated by oldscr. The resid argument is so that the solver has a place to return the residual,
which is used in calculating the next correction problem on a coarser level.

Numerous iterative procedures, based primarily on conjugate direction methods, require a user
callback routine to calculate matrix-vector products, thus requiring a matrix _vec argument to be
passed. Also, many iterative procedures allow a stopping criterion based on reducing the (possibly
scaled) residual norm by some amount, e.g., lp —SolverRNorm.

There is an important issue that must be addressed. There are many people who compute who
do not know C, but only Fortran. Using the data structures advocated in §4.2 would preclude these
people from using the abstract solvers. Some simple subroutines, callable from Fortran (or any
language) that build the data structures in a portable manner must be included. For example, a
Fortran program can call a C program which returns a data handle (a small integer):

mgh=mgini ( levels, dtype )
This subroutine allocates space for the structures. The integer argument dtype is used to determine
the data type (c.f., the value of FLOAT in §4.1):

Dtype | Data Floating point data description |
1 float single precision real
2 double double precision real
3 complex | single precision complex
4 dcomplex | double precision complex
<0 | user —value = length in bytes

While this may seem ugly, this simple mechanism allows the C codes to be written in a “typeless”
manner. Note that a mechanism is in place for user defined data types as well.
Matrix structures are defined similarly and return a matriz handle:
mat = mgmat ( mgh, type, cols, rows, ldim, coeffs, ia, ja )
Matrix handles are coupled to the data handle.
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Table 8: Level Information Structure

struct LevInfo {

struct ExternSubr *solver; /* Pointer to how to call solver */

struct ExternSubr *precond; /* Pointer to how to call preconditioner */
struct ExternSubr *matrix_vec; /* Pointer to how to call matrix*vector */
struct ExternSubr *change lev; /* Pointer to how to call level changer * /
int Solverlters; /* Number of iterations in solver() */
float  SolverRNorm; /* How much to reduce residual norm */
int MGlters; /* Number of iterators of MGC */

int Nllters; /* Number of iterators of NIC */

void  *X; /* Pointer to z; */

void  *Bjy; /* Pointer to b; */

int NX;; /* Length of z; */

int NBj; /* Length of b; */

int NZA;; /* Number of nonzeroes in A, */

struct Matrix *4;; /* Pointer to A; representation */

struct Matrix *R;; /* Pointer to R, representation */

struct Matrix *Pj; /* Pointer to P; representation */

struct Matrix *NIP;; /* Pointer to NZP; representation */
struct Matrix *FASR;; /* Pointer to R;FAS) representation */

}

Subroutines are declared through another C routine:
real CN, CNZ, Cextra
external rtn

(set CN, CNZ, and Cextra)
isubr = mgsubr ( mgh, rtn, iparms, fparms, CN, CNZ, Cextra, savscr

Note that only the addresses of rtn, iparms, and fparms are saved by mgsubr, not the contents. A
subroutine handle is returned which is coupled to the data handle. Use of the Fortran EXTERNAL
declaration allows subroutine addresses to be passed.
Another routine can be called to setup a LevInfo structure for level J:
iret = mglevi ( mgh, j, isolver, iprecond, imatv, ichlev,
nsolviters, rnorm, mgiter, niiter, xj, bj, nxj, nbj,
nza, mata, matr, matp, matnip, matfas )
Here, isolver, iprecond, imatv, and ichlev are the return values from mgsubr or 0 if none is wanted.
Also, mata-matfas are return valves from mgmat or 0 if no matrix exists. The x.j and b_j are the
addresses of the first elements of zj and bj. These may be indexed as X(ixb) and B(ixb), respectively,
depending on the user’s programming style. A nonzero return value means an error occurred.
Finally, the multilevel subroutines can be called:
iret = mgmeth ( mgh, iparm, resid )
where iparm is a simplification of the one in Table 2 (it only needs to contain mgalg, start], levelc,
levelf, and info, but is extendable). The last argument, resid, is an array where the final residual is
returned. A nonzero return value means an error occurred.
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To free space, a final call can be made:
iret = mgdone ( mgh ) A nonzero re-
turn value means an error occurred. Obviously, this last call is unnecessary if the program immedi-
ately ends. 7 7

The advantage of this approach is that subroutines can be written in whatever language makes the
most sense. Further, people who program in C or C++ will not be penalized by having to construct
data structures that only make sense in Fortran.

The worst disadvantage is that to compile the library, some knowledge is needed about how
the local compiler treats subroutine names. There are three common methods in use and on many
platforms this can be determined automatically. On a very small number of machines, Fortran and
C programs cannot be mixed conveniently or at all; these machines will be ignored by this author.

5. CONCLUSIONS

In this paper, abstract multilevel methods were reviewed. Two versions of the author’s publicly
distributed multilevel codes (Madpack) were discussed. From the experience of these codes, a model
of a better approach using a mixed language approach (C and Fortran+preprocessor) was proposed.
Implementing such a system, starting from having already working solvers (e.g., (8], [3], and [4]) is a
simple exercise for an expert in C and Fortran programming.
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SUMMARY

Flame sheet problems are on the natural route to the numerical solution of multidimensional
flames, which, in turn, are important in many engineering applications. In order to model the flame
structure more accurately, we use the vorticity-velocity formulation of the fluid flow equations
instead of the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear
coupled elliptic partial differential equations involves a pseudo transient process and a steady state
Newton iteration. Rather than working with dimensionless variables, we introduce scale factors
that can yield significant savings in the execution time. In this context, we also investigate the
applicability and performance of several multigrid methods, focusing on nonlinear damped Newton
multigrid, using either one way or correction schemes.

1. INTRODUCTION

Recent advances in the development of computational algorithms and supercomputers have
provided new extremely powerful tools with which to investigate chemically reacting systems that
were computationally infeasible only a few years ago (see [1], [2], [3], and [4]). The difficulties
associated with solving high heat release combustion problems stem from the large number of
dependent unknowns, the nonlinear character of the governing partial differential equations and the
different length scales present in the problem. Typical combustion problems may involve, in
addition to the temperature and the fluid dynamics variables, dozens of species defined at each grid
point and require the resolution of curved fronts whose thickness is on the order of thousandths of
the domain diameter, across which critical fields vary by orders of magnitude. As a result of the
fluid dynamics-thermochemistry interaction and its effect on the flame structure, the governing

*This work was supported in part by CERMICS, ENPC, IBM, the Office of Naval Research, and the Department
of Energy.
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equations are strongly coupled together and are also characterized by the presence of stiff source
terms and nonlinearities. Hence, Newton methods with sophisticated control strategies, including
damping and adaptive continuation techniques, are needed. However, in spite of these difficulties,
the numerical modeling of multidimensional laminar (or turbulent) flames has been recently
motivated by the growing demand for high fuel efficiency combined with low pollutant emission.
While three dimensional turbulent flame simulations still remain infeasible on current
supercomputers, axisymmetric laminar diffusion flames constitute a problem of practical
importance since they are the flame type of several combustion devices. Hence, new robust
numerical models of such a system will provide an efficient tool to probe flame structures and
investigate the coupled effects of complex transport phenomena with chemical kinetics.

As part of an ongoing effort to expand combustion modeling capabilities, we investigate
computationally the performance of several multigrid techniques (see [5], [6], (7], and [8]) combined
with the numerical solution of combustion related problems. In the present work, we consider a
flame sheet problem rather than a finite rate chemistry model for an axisymmetric laminar diffusion
flame in order to alleviate the memory and CPU requirements on the computer simulations. The
numerical techniques presented in this paper, however, also apply to combustion problems with
finite rate chemistry [9]. We note that a flame sheet model adds only one field to the hydrodynamic
fields that describe the underlying flow. A detailed kinetics model adds as many fields as species
considered in the kinetic mechanism, each with its own coupled conservation equation. Since the
CPU time and the memory requirements scale with the square of the number of dependent
unknowns, the flame sheet model considerably reduces the cost of the computer simulations while
still keeping the coupling and nonlinearity features associated with the original problem.

In the flame sheet model, the chemical reactions are described with a single one step irreversible
reaction corresponding to infinitely fast conversion of reactants into stable products. This reaction
is assumed to be limited to a very thin exothermic reaction zone located at the locus of
stoichiometric mixing of fuel and oxidizer, where temperature and products of combustion are
maximized. To further simplify the governing equations, one neglects thermal diffusion effects,
assumes constant heat capacities and Fick’s law for the ordinary mass diffusion velocities, and takes
all the Lewis numbers equal to unity [2]. With these approximations, the energy equation and the
major species equations take on the same mathematical form and by introducing Schvab-Zeldovich
variables, one can derive a source free convective-diffusive equation for a single conserved scalar.
Although no information can be recovered about minor or intermediate species in the flame sheet
limit, the temperature and the stable major species profiles in the system can be obtained from the
solution of the conserved scalar equation coupled to the flow field equations. Further, the location
of the physical spatially distributed reaction zone and its temperature distribution can be
adequately predicted by the flame sheet model for many important fuel-oxidizer combinations and
configurations. Since being studied as a means of obtaining an approximate solution to use as an
initial iterate for a one dimensional detailed kinetics computation in [10], flame sheets have been
routinely employed to initialize multidimensional diffusion flames.

In §2, a comparison of three possible formulations of the problem is presented, including the
governing equations and boundary conditions. In §3, the general solution algorithms are presented,
including a damped Newton method, Jacobian evaluation, linear solvers (Bi-CGSTAB or GMRES),
and the pseudo transient process. In §4, various multigrid methods are discussed in the context of
flame sheets. In §5, numerical experiments are presented. Finally, in §6, some conclusions are
reached.
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2. VORTICITY-VELOCITY FORMULATION

In diffusion flames the combustion process is primarily controlled by the rate at which the fuel
and oxidizer are brought together in stoichiometric proportions. Thus, independently of the
submodel used for the chemical kinetics (finite rate vs. flame sheet), the overall accuracy of the
numerical solution strongly depends on an accurate representation of the flow field. Hence, a brief
discussion on the various formulations of the Navier-Stokes equations in the context of laminar
combustion problems is of order.

The first numerical solution of two dimensional axisymmetric laminar diffusion flames was
obtained using the streamfunction-vorticity formulation [2]. This approach is attractive for three
reasons:

1. It eliminates the coupling associated with the presence of the pressure in the momentum
equations.

2. It reduces the number of equations to be solved by one.

3. It also has the important advantage that continuity is explicitly satisfied locally.

However, the specification of boundary conditions meets with difficulties when one attempts to
specify vorticity boundary values. In particular, a zero vorticity boundary condition at the inlet of
the computational domain results in a rough approximation of the true solution, thus severely
altering the resulting velocity field [3]. On the other hand, the specification of vorticity boundary
values in terms of the streamfunction requires the discretization of second order derivatives, thus
yielding off diagonal terms in the Jacobian matrix which result in having to solve severely ill
conditioned linear systems. Another important difficulty associated with the
streamfunction-vorticity approach is that the extension to three dimensional configurations through
the introduction of a vector potential instead of the scalar streamfunction is cumbersome and °
computationally expensive since it introduces additional dependent variables.

Alternatively, a primitive form of the Navier-Stokes equations has been recently implemented for
several axisymmetric laminar diffusion flames (see [3] and [4]). In this approach, the velocity field is
computed using the momentum equations and the pressure field is recovered from the continuity
equation. As a result of the difference in nature of the governing equations, the discrete pressure
field has to be determined in a manner consistent with the discrete continuity equation. This can
be achieved to machine zero on a staggered grid. However, staggered mesh schemes do also have
drawbacks in complex geometries configurations where non-orthogonal curvilinear coordinates are
used and when using sophisticated numerical techniques such as multigrid methods (see [11] and
[12]). Although feasible ([13] and [14]), the development of staggered grid based multigrid solvers is
computationally cumbersome since the transfer operators between levels do not coincide for each
dependent variable in order to preserve a staggered grid arrangement on all levels. This difficulty
may even be further exacerbated in three dimensional configurations. Finally, it is worthwhile to
note that two and three dimensional solutions of incompressible viscous flows on a nonstaggered
grid have been reported (see [11] and [12]). However, the extension of such procedures to highly
compressible systems where the density can vary by several orders of magnitude inside the

computational domain may still yield some complications.
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The vorticity-velocity formulation constitutes a third approach to the numerical solution of the
Navier-Stokes equations. A review of incompressible fluid flow computations using this formulation
is well documented in [15]. The vorticity-velocity formulation of the Navier-Stokes equations has
been recently extended to two and three dimensional compressible flows and implemented for the
numerical solution of flame sheet problems (see [16] and [17]). As motivated in these references, a
vorticity-velocity formulation allows replacement of the first order continuity equation with
additional second order equations. Whereas the streamfunction-vorticity formulation also
accomplishes the same replacement in two dimensions, vorticity-velocity is extensible to three and
allows more accurate formulation of boundary conditions in a numerically compact way.
Furthermore, off diagonal convective terms in off diagonal blocks that exert a strong influence in a
streamfunction-vorticity formulation disappear. Another important attractive feature of the
vorticity-velocity formulation is that the governing equations can be discretized on a nonstaggered
grid, thus allowing the implementation of a multigrid algorithm at a relatively low overhead in
additional programming (see [16], [17], and [18]).

The flame sheet governing equations consist of the conservation of total mass, momentum and a
conserved scalar equation. The conservation of total mass and momentum equations constitute the
flow field problem and are formulated using the vorticity-velocity formulation of the compressible
axisymmetric Navier-Stokes equations. A source free convective-diffusive equation for a conserved
scalar is solved coupled together with the flow field equations and the temperature and major
stable species profiles in the system can be recovered from the conserved scalar (see [2], [19], and
references therein). We introduce the velocity vector v = (v,v,) with radial and axial components
v, and v,, respectively, and the normal component of the vorticity

_ v Ovs
=%z or’

The vorticity transport equation is formed by taking the curl of the momentum equations, which
eliminates the partial derivatives of the pressure field. A Laplace equation is obtained for each
velocity component by taking the gradient of (1) and using the continuity equation. This yields the
governing equations in the following form:

(1)

Ty + gy = L-1%an-2 (20,
P | a8 (w) = gy ey gy, Qe 220 +Vp- VY - Vpgt @
2 (_V_(div('v)) - Vu—Vu, -V -V, -V%’;‘) ,
12 (rpD88) 1+ 2 (pDE) = pv, 8 + pv. g,

where p is the density, u the viscosity, g the gravity vector, div(v) the cylindrical divergence of the
velocity vector, S the conserved scalar, D a diffusion coefficient, and the components of V3 are
(Qag, —gg). The density is computed using the perfect gas law and, in the low Mach numbers
approximation valid for these flame configurations, one can use the outlet (constant) pressure.
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Table 1: Boundary conditions

Axis of symmetry (r = 0) v =0] & = w=0 =0

Outer zone (r = Ry0;) %%::O %‘zﬂ w=%‘fzz S=0
Inlet (z = 0) v, =0 | v, =v(r) w=Zr— % S = 8%r)
Exit (z = L) v,=0] =0 % =0 g5 =90

Consequently, in the above formulation, the pressure field is eliminated from the governing
equations as a dependent unknown and can be recovered, once a computed numerical solution of
(2) is obtained, by solving a Laplace type equation derived by taking the divergence of the
momentum equations [15].

Recalling that all of the Lewis numbers are taken equal to unity, the quantity pD is given by the
viscosity coefficient x4 divided by a reference Prandtl number and we use an approximate value for
air, Pr = 0.75. Hence, in this model, the determination of all the transport coefficients is reduced
to the specification of a transport relation for the viscosity and we use the same power law as the
one given in [2]. We also note that, due to the high temperature gradients present in the system,
the viscosity derivatives in the right hand side of the vorticity transport equation (2) can not be
neglected. Our numerical experiments show that such an approximation leads to significant
differences in the numerical solution, especially for the radial velocity profile. Finally, a conservative
form of the convective terms can also be considered but it yields slower convergence rates without
any significant changes in the computed solution.

A schematic of the physical configuration is given in Figure 1. It consists of an inner cylindrical
fuel jet (radius R; =0.2cm), an outer co-flowing annular oxidizer jet (radius Ro =2.5cm) and a
dead zone extending to R,,,; =7.5cm. The inlet velocity profile of the fuel and oxidizer are a plug
flow of 35cm/s. This yields a typical value for the Reynolds number of 550. Further, the flame
length is approximately L; =3cm [19] and the length of the computational domain is set to
L =30cm. Although the fuel and oxidizer reservoirs are at room temperature (300 °Kelvin), we need
to assume, in the flame sheet model, that the temperature already reaches the peak temperature
value along the inlet boundary at r = R;. This peak temperature is estimated for a methane-air
configuration to be 2050°K. Hence, the inlet profile of the conserved scalar, S°(r), is specified in
such a way that the resulting temperature distribution blends the room temperature reservoirs and
the peak temperature by means of a narrow Gaussian centered at R;. The narrowness of the
Gaussian profile has a relevant influence on the calculated fame length, so that its parameters have
to be determined appropriately [19]. The boundary conditions are summarized in Table 1. Finally,
we note that the use of the definition of the vorticity (1) for the vorticity outlet boundary condition
does not yield any relevant changes in the computed solution.

3. GENERAL SOLUTION ALGORITHM

The partial differential equations (2) together with the boundary conditions (see Table 1) are
discretized on a two dimensional tensor product grid. A solution is first obtained on an initial
coarse grid. Additional mesh points are then adaptively inserted in regions of high physical activity
by equidistributing weight functions of the local gradient and curvature of the numerical solution
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Figure 1: Physical configuration (not in scale)

[2], which yields a 129 x 161 grid. To verify the grid independence of the solution, we refined this
grid to 257 x 219 points. The relative error between the two solutions was found to be lower than
2% and differences were only encountered in the outflow region where the grids were still kept
somewhat coarse. However, the flame length and the temperature distribution inside the flame were
accurately predicted on the 129 x 161 grid. Hence, this grid will be considered as the finest grid in
the present work.

The spatial operators in the partial differential equations (2) are approximated with finite
difference expressions. Diffusion and source terms are evaluated using centered differences. We
adopt a monotonicity preserving upwind scheme for the convective terms (see [20, p. 304]), for
instance,

S=S0 (o) O

aS
—_— = TN ;.1 0 )
Ur aX{('Ur),,__;y } T — Tic1 Ti+1 — Ti

or 3)
The boundary conditions given in Table 1 involve only zero or first order derivatives. For the latter
terms, first order back or forward differences can be used, except for two boundary conditions which
require a more accurate treatment. First, as motivated in [17], the vorticity inlet boundary
condition is discretized using the vorticity values at the first two lines of the computational domain.
More specifically, at an inlet point (i,1), we discretize the equation w = %‘i; - %% as follows:

(’Ur)z = ('vz)i+1 - (vz)i—l (4)
22— 21 Ti+1 — Ti-1

1
-2-((411 + W2) =

It is also of critical importance for the accuracy of the numerical solution that the axial velocity
boundary condition on the axis of symmetry be evaluated using a second order scheme. At any
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point (1, 7), we have
ro — T1)2 62’02

( 2
(vz)2 - ('Uz)l = ) Or2 +0 ((Tz — 7'1) ) .
The right hand side is evaluated using the Laplace equation for v, in (2). On the axis of symmetry,

this reduces to

v, v, 6w 0 (v,0p

or? 922  dr 0Oz (75) ’
The radial derivative of the vorticity can be discretized with a first order difference while still
yielding an overall second order accuracy for v,. By comparing our numerical solutions with a
primitive variable solution of the same problem [19], we found that these two boundary conditions
exerted a strong influence on the overall accuracy of the numerical solution.

The discretization of the partial differential equations (2) together with the boundary conditions

(Table 1) yields a set of algebraic equations of the form F(U) = 0, which is solved using a damped
Newton method '

JU™MAU™ = -\*"F(U™), n=0,1,..., (5)

with convergence tolerance |[AU"||s < 107°. The Jacobian matrix J(U™) is computed numerically
using vector function evaluations and the grid nodes are split into nine independent groups which
are perturbed simultaneously (see [2] for more details). Selected cases were rerun with a more
stringent convergence tolerance of 10-%, without any significant changes in the numerical solution.
Rather than working with dimensionless variables, we introduce a scale factor ay, L € [1,n,], for
each dependent variable (n. = 4 for the flame sheet problem). The norm of the discrete vector AU™

is then given by 7
A s= [ % 5 (AU (©)
i€[l,n,] je[l,n:]Ie[l,n ]
It is worthwhile to point out that an appropriate choice of the scale factors can yield significant
savings in the execution time. This point will be further illustrated with numerical experiments in
§5.1.

The linear system (5) is inverted at each Newton step through an inner iteration. This inner
iteration may consist of either the Bi-CGSTAB algorithm [21] or a restarted version of GMRES [22]
combined with a Gauss-Seidel (GS) left preconditioner. This choice is motivated in [16] through
various numerical simulations of flame sheet problems. Although a single Bi-CGSTAB /GS iteration
requires approximately 1.5 times more time than an average GMRES /GS iteration, both algorithms
yield total execution times which are in general within a few percent of each other. The former has
lower memory requirements (see the end of §5.2 for more details). The convergence of the inner
iteration is based on the norm of the left preconditioned linear residual using an absolute tolerance
equal to one-tenth of the Newton tolerance. Such termination criterion brings enough information
on the update vector AU™ back to the Newton iteration (see [16] for more details).

Due to the nonlinearity of the original problem, a pseudo transient process is used to produce a
parabolic in time problem and bring the starting estimate into the convergence domain of the
steady Newton method. The original nonlinear elliptic problem is cast into a parabolic form by

au

appending a pseudo transient term % to the original set of algebraic equations F(U) = 0, and a

fully implicit scheme solves (again with Newton method)

Un+1 - Un
Atn—H

FU™) = FU™) + =0, (7)
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where At™*! is the (n + 1) time step. The number of time steps needed to bring the initial
guessed solution into the convergence domain of the steady Newton iteration depends on the size of
the grid, and the coarser the grid, the fewer relaxation steps are necessary. This point will be
further discussed in §5.2.

4. MULTIGRID TECHNIQUES

The multigrid philosophy applied to our model problem is derived from [5], [7], and [8]. We
assume that there is a sequence of spaces M;, i =1,...,k, where the M, approximate M;. We
further suppose there exist restriction and prolongation mappings

Ri: Mi_)Mi+11 1.<_1§k—1:
Pi: M- M, 2<i<k.

between neighboring spaces. We also assume there is a sequence of problems (5) represented by J;.
A multilevel correction algorithm, where the finest level is level 1 and the coarsest level is level k,
is simply defined by

Algorithm MGC ( lev, {J;, 25,5}, {Pi}im {Rs}32

1. Ziew & SOl'Ue'rlcv(Jlevy Tiev, blev)

2. If lev < k, then repeat 2a—2d until some condition is met:
2a. Tlev+l 07 blev+1 A Rlev(blev - Jlevzlev)
2b. MGC ( lev +1, {ijzjabj},’;'=11 {'Pj}?:‘b {RJ f;% )
2C. Tiev ¢« Tiev + Prev+1Tien+1
2d. Tiew — SOlve"'lev(chvaxleu;blcv)

In our case, the solver on every level is either Bi-CGSTAB/GS or GMRES/GS. In Step 1 on level ,
our stopping criterion was that the linear residual was adequately reduced (see §3). On the other
levels, the stopping criteria was either an upper limit on the number of iterations or that the linear
residual was adequately reduced.

A common condition in step 2 is to do steps 2a—2d some specified number of times (e.g., 0 for
one way multigrid, 1 for a V Cycle, or 2 for a W Cycle). In §5.2, a V Cycle took less overall time
than any other choice for a condition in step 2. However, many V Cycles were necessary, starting
from the finest level (see the definition of Algorithm NIC below).

Brandt’s FAS algorithm [6] is a nonlinear variant of Algorithm MGC. A nonlinear smoother is
used in steps 1 and 2d, the actual solution is computed on every level, and corrections are
computed before interpolation in step 2c (see [23] for more details).

We use a nested iteration multilevel algorithm since we do not have an adequate initial guess to
the solution initially.

Algorithm NIC ( lev, {Jj,a:j,bj}f:l, {Pj}’;=2, {’R,—}f;ll )
1. MGC (k, {J;,2;,b; Y5, {Pi}oca {Ri}551)
2. Do steps 2a—2b with lev=k—1,---,1:

2a. Tiey Plev+1zlev+1

2b. MGC ( lev, {Jj,xj,bj},;_:l, {Pj}’;=2, {Rj}?;ll
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A damped Ncwton multilevel algorithm is defined by introducing an additional step before each
reference to Algorithm MGC in just Algorithm NIC. Before each reference to Algorithm MGC, a
Jacobian is formed and a damped Newton step is performed. The last Jacobian on a level is saved
for use in multilevel correction steps. A onc way multilevel algorithm means that Algorithm MGC
never performs any portion of its step 2 as part of its use by Algorithm NIC. We always use a
damped Newton iteration, but we drop the term damped Newton when referring to one way
multilevel methods.

The difference between FAS and damped Newton multilevel methods is easy to categorize. FAS
uses a nonlinear iterative method (e.g., nonlinear Gauss-Seidel) while damped Newton uses
standard linear solvers. When evaluating the nonlinear function is inexpensive, FAS usually
produces an approximate solution faster than the damped Newton multilevel method. However,
when the function evaluations are expensive, the damped Newton multilevel method usually
produces an approximate solution faster than FAS. In a typical diffusion flame problem with finite
rate chemistry [9], the function evaluations are horrendously expensive, so we did not explore FAS.
For a flame sheet problem solved using FAS, see [24].

5. NUMERICAL RESULTS

In this section, we present several numerical results obtained on an IBM RISC System /6000
(model 560). In §5.1, we focus on unigrid calculations and emphasize the importance of the scale
factors a; in (6) in order to appropriately monitor the convergence of the outer damped Newton
iteration. Our numerical experiments show that the overall execution times can be decreased by up
to an order of magnitude by taking a large scale factor for all of the vorticity corrections in the
computational domain. The execution times can be decreased by an additional factor of six and ten
by combining the unigrid numerical procedure with damped Newton multilevel iterations, using
either one way or correction schemes, respectively. The corresponding numerical results are
presented in §5.2.

5.1. Unigrid tests

In this section, we discuss the influence of the scale factors a; in (6) on the whole convergence
history of the numerical solution. By modifying these scale factors, we shift the balance of work
required in the outer Newton iteration and in the inner linear iterations between the different
degrees of freedom present in the system. In particular, a large scale factor for the vorticity
component asks for less accuracy in the computed vorticity corrections that are brought back to the
Newton iteration, thus reducing considerably the amount of work at each Newton step. As
indicated in our numerical experiments, this does not yield any loss of accuracy for the other
components of the numerical solution (the radial and axial velocity and the conserved scalar).
Another important consequence is that much larger time steps can be taken, even at the beginning
of the pseudo transient process when the solution is approximated with a very “coarse” initial
guess. Furthermore, only a few time steps are required (typically 20) before the numerical solution
already lies in the convergence domain of the steady Newton iteration (5). With lower scale factors
for the vorticity, most of the CPU time is spent during the pseudo transient iterations, since much
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smaller time steps need to be taken and the convergence domain of the iteration scheme (5)
becomes much narrower. Our numerical experiments indicate that a scale factor for the vorticity of
10% can yield savings in CPU time of up to an order of magnitude without altering the velocity and
temperature profiles of the numerical solution.

5.2. Multigrid acceleration

In this section, we present further improvements in the total execution times obtained by
combining the numerical procedure described in §3 and §5.1 with damped Newton multilevel
iterations, using either one way or correction schemes. In all of the results, the speedups represent
ratios of CPU times.

We consider the finest level to be a 129 x 161 grid and we construct three additional coarser
grids by successively discarding every other node from one grid to the coarser one. This yields a
coarsest grid of 17 x 21 points. It is worthwhile to note that the use of even coarser grids in these
problems meets with difficulties since the calculated flame speeds become excessively large due to
the influence of numerical diffusion and/or conduction (see [25]) and the Newton iteration (5) fails
to converge.

In the one way nonlinear multigrid approach, we solve the nonlinear problem F(U) = 0 in one
cycle, starting at the coarsest level and ending at the finest. Asymptotically, as the mesh spacing
approaches zero, the interpolant of the computed solution on one grid lies in the convergence
domain of Newton method on the next finer grid [26]. In our numerical calculations, this was found
to be the case for all levels considered, when using either cubic or linear interpolation between
levels. As a consequence, the pseudo transient process needs only to be performed on the coarsest
level, in order to bring the initial guess into the convergence domain of the steady Newton iteration
on this level. This procedure is particularly attractive for two reasons:

1. By time stepping on the coarsest level, we reduce considerably the amount of work spent in
the pseudo transient phase.

2. On coarser grids, less computer time is needed to solve (5).

The first set of numerical experiments was performed using Bi-CGSTAB/GS as the linear
smoother. The numerical results obtained during the pseudo transient phase are presented in
Table 2. On our workstation, the time stepping requires 15 seconds on the coarsest level as opposed
to over 40 minutes on the finest, thus yielding a speedup of 166. Table 3 breaks down the numerical

results for the steady state Newton iterations. Note that the CPU time spent during the pseudo
transient process has been included in the computation of the speedups presented in Table 3. A
speedup of a factor of four is achieved using the one way nonlinear multigrid on two levels, which is
due to the significant decrease of smoothing steps done on the finest level. With three and four
levels, we obtained speedups of 5.4 and 5.8, respectively. The four level multigrid improves only
marglnally the execution times, since it decreases the CPU time spent on the third level, while most
of the work is already concentrated in the smoothing iterations on the finest level. Finally, it is
interesting to note that linear interpolation between levels yields lower execution times than cubic
interpolation when Bi-CGSTAB/GS is used as the linear smoother.

We also implemented the one way nonlinear multigrid algorithm using GMRES/GS as the linear
smoother with 25 Krylov vectors. This requires 15 Mb of additional storage for the Krylov space.
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Table 2: Numerical results for one way nonlinear multigrid during the pseudo transient phase with
Bi-CGSTAB/GS as the linear smoother

Operation Levels

1 T27T 3 4
BiCGSTAB/GS iterations | 634 | 352 | 217 | 160
Speedup in time 10| 6.6 346 |166.0

Table 3: Numerical results for one way nonlinear multigrid

Operation Levels

1 2 3 4
smooth(1) 1632 | 371 | 384 | 378
smooth(2) — | 723 | 390 | 380
smooth(3) — | —]326]| 346
smooth(4) - -] =192
Speedup in time | 1.0| 42| 54| 58

Smooth(z) represents the total number of Bi-CGSTAB/GS steps done on level i during the steady
state Newton iterations.

We found in our numerical experiments that the use of cubic interpolation between levels yielded
lower execution times than linear interpolation and that it was more efficient to adaptively increase
the time step slightly faster during the pseudo transient phase with respect to the Bi-CGSTAB/GS
calculations. The numerical results are given in Tables 4 and 5. We obtain a speedup of 160 for the
pseudo transient phase on four levels. As indicated in Table 9, the total execution times delivered
are greater than the ones obtained with Bi-CGSTAB/GS. This latter algorithm seems therefore to
be a preferable linear smoother when using one way nonlinear multigrid. Note also that the unigrid
calculation fails to converge since GMRES /GS stagnates.

In order to solve the linear systems more efficiently, especially the one on the finest level, we
perform damped Newton multilevel iterations, making use of the Jacobians computed on all levels
coarser than the current one (see algorithm MGC in §4 for more details). The numerical results

Table 4: Numerical results for one way nonlinear multigrid during the pseudo transient phase with
GMRES/GS as the linear smoother

Operation Levels

2 3 4
GMRES/GS iterations | 572 | 367 | 258
Speedup in time 7.2 34.6 | 159.6
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Table 5: Numerical results for one way nonlinear multigrid

Operation Levels

2 3 4
smooth(1) 530 | 945 | 945
smooth(2) 1559 | 592 | 590
smooth(3) — | 481 | 825
smooth(4) -1 —1161
Speedup in time | 3.2 | 4.2 | 4.2

Smooth(i) represents the total number of GMRES/GS steps done on level ¢ during the steady state
Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

Table 6: Numerical results for damped Newton multilevel iterations

Operation Levels

1 2 3 4
smooth(1) 1632 | 238|268 | 243
smooth(2) — | 1096 | 645 | 673
smooth(3) — | — 8611243
smooth(4) - - -1 799
Speedup in time | 1.0 48] 62| 6.6

Smooth(i) represents the total number of Bi-CGSTAB /GS steps done on level i during the steady
state Newton iterations.

presented in Table 6 are obtained using 30 steps of Bi-CGSTAB/GS as the linear smoother, which
may seem at first glance to be an excessive number of iterations. We obtain a speedup of 6.6 when
using four levels. A comparison of Tables 3 and 6 shows that the balance of smoothing iterations is
shifted towards the coarsest levels when using damped Newton multilevel iterations, thus yielding
lower execution times (approximately 12%) than the ones obtained with the one way nonlinear
multigrid. However, it is worthwhile to point out that this improvement comes at the expense of
storage since the one way nonlinear multigrid requires 39 Mb and the damped Newton multilevel
iterations require up to 62 Mb. This difference is due mainly to the fact that damped Newton
multilevel correction methods require saving a Jacobian on every level instead of just one.

Finally, we also performed damped Newton multilevel iterations using GMRES/GS as the linear
smoother. In our numerical experiments, we found that the choice of 25 Krylov vectors delivered '
lower execution times than 20 or 30. We also used cubic and linear interpolation in algorithm NIC
and MGC, respectively (see §4). The numerical results are presented in Table 7. We obtain a
speedup of a factor of 10.5 when using four levels, thus significantly improving the maximum
speedup obtained with Bi-CGSTAB/GS. Using damped Newton multilevel iterations and
GMRES/GS as the linear smoother, the whole numerical solution for the flame sheet problem on a
129 x 161 grid is obtained in about 9 minutes on our workstation. On a supercomputer, the CPU
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Table 7: Numerical results for damped Newton multilevel iterations

Operation Levels

2 3 4
smooth(1) 218 | 216 | 219
smooth(2) 2272 { 565 | 585
smooth(3) — | 1179 | 1159
smooth(4) - — | 1020
Speedup in time [ 5.1 | 99| 10.5

Smooth(Z) represents the total number of GMRES/GS steps done on level ¢ during the steady state
Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

times will drop dramatically.
6. CONCLUSIONS

In this paper, we presented a new numerical procedure to solve flame sheet problems. The
governing equations use the vorticity-velocity formulation of the Navier-Stokes equations coupled
together with a conserved scalar equation. By appropriately monitoring the norm of the correction
vector in the damped Newton iteration, significant savings in the overall execution time can be
obtained. These performances can be further improved by combining the above numerical
procedure with one way nonlinear multigrid and damped Newton multilevel iterations. The latter
approach yields lower execution times than the former but at a higher cost in storage. With four
levels of grids, a speedup of 5.8 is obtained with a one way nonlinear multigrid and
Bi-CGSTAB/GS as the linear smoother. Similarly, damped Newton multilevel iterations and
GMRES/GS as the linear smoother obtain a speedup of more than a factor of 10. For three
dimensional problems, we should obtain speedups much greater than 10.
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SUMMARY

A key ingredient in the simulation of self-gravitating astrophysical fluid
dynamical systems is the gravitational potential and its gradient. This paper
focuses on the development of a mixed method multigrid solver of the Poisson
equation formulated so that both the potential and the Cartesian components
of its gradient are self-consistently and accurately generated. The method
achieves this goal by formulating the problem as a system of four equations
for the gravitational potential and the three Cartesian components of the
gradient and solves them using a distributed relaxation technique combined
with conventional full multigrid V-cyles. The method is described, some
tests are presented, and the accuracy of the method is assessed. We also
describe how the method has been incorporated into our three-dimensional
hydrodynamics code and give an example of an application to the collision of
two stars. We end with some remarks about the future developments of the
method and some of the applications in which it will be used in astrophysics.

1. Introduction
In recent years a number of astrophysicists [1]-[7] have developed simulation
tools which build in increasingly realistic physics. The present work grew
out of an ongoing effort by us to incorporate enough physics and to realize
that physics with robust algorithms so that we can simulate both existing
observed phenomena and make reliable predictions which the astronomers
can utilize in making better observations and interpreting those
observations. The ubiquitous existence of fluids and gravitation in the
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universe demands that, if we are to have even the most rudimentary
simulation code, it must incorporate at least interacting fluids and
gravitational physics. In this work, we restrict our attention to the
weak-field, Newtonian limit of gravitation. The hydrodynamics code we
have created also builds in the effects due to the Special Theory of
Relativity, so the description of high speed phenomena is included. The
restriction to weak-field gravity implies that the gravitational field is
determined by the gravitational potential, which must be a solution to
Poisson’s equation in three dimensions subject to Dirichlet boundary
conditions at the edges of the computational volume. In the coupled
hydrodynanﬁc—gravitational system, not only the potential but also its
gradient is needed. The gradient contributes to the fluid’s acceleration due
to its self-gravity, inducing the momentum components to change.

The traditional procedure is to determine the potential by solving the
Poisson equation with given Dirichlet boundary condition, then construct
approximations to the components of the gradient via finite differencing the
potential. However, in simulations of astrophysical gravitating fluids, the
development of quite complex flows must be anticipated. Examples from
astrophysics include supernova explosions, gravitational collapse,
propagation of high-speed jets from active galactic nuclei, star collisions
and disruptions in dense star clusters, and realistic models of the early
universe. For most of these simulations, we need to compute the gradients
of the gravitational potential as accurately as possible, which has motivated
our development of an alternate approach to the gradient computation.
Here we describe a method which can yield more robust gradients in
systems that exhibit large variability in space. This is done using a
distributed relaxation procedure coupled with full multigrid V-cycles and is
described in Section 2. In Section 3 we present some tests of the method on
three-dimensional systems. Section 4 presents our incorporation of it into
the three-dimensional relativistic hydrodynamics code. Finally, we briefly
describe an application of the code to the collision of two stars and
comment on the applications for which the code can be used.

2. The Mixed Method Algorithm
The problems we are interested in are three-dimensional, and the results
that we present in later sections are for such problems. However, in
presenting the method, we will consider its two-dimensional version to



make the description easier to understand and visualize. All components of
the method, of both the discretization process and the multigrid algorithm,
have natural three-dimensional analogs.

a. The Finite Volume Element Discretization Consider the following
partial differential equation defined on some square domain €2 in R?:

- V-V¢ =f in Q,
{ ¢ =g on ON. (1)

We let u and v denote the components of the gradient of -¢:
(u,v) = -V¢

Then the partial differential equation may be written in the form of a
first-order system in 2

u + ¢, =0 (uequation)
v + ¢, =0 (vequation) (2)
u, + v, =f (pequation),

with boundary condition
¢ = g on 9.

Here the labels u,v, and p for the equations are introduced simply for
convenience. To discretize this system, we follow the Finite Volume
Element principles developed in [8]. Consider a uniform square mesh Qh
with mesh size h that covers 2. We introduce three sets of control volumes,
one for each of the three equations in Eq.2. These volumes are shown in
Fig. 1. We denote by U the set of all volumes U that will be used to
discretize the u equation in Eq.2. Similarly, we will use the notation V and
P for the sets of volumes V and P for the v and p equations respectively.
For our finite element space we consider the lowest order Raviart-Thomas
elements on the triangulation given by the volumes P:

u" is linear in x and constant in y on each P € P,
vh is linear in y and constant in z on each P € P,
¢" is constant on each P € P.

The location of the nodes for each of the unknowns with their indexing is
also shown in Fig. 1. We can now disretize the equations. We take the u
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equation in Eq.2 and integrate it over each U € U. As an example, let U, ;
be the volume in U that is centered at the interior u” node (7,5). We then
have

fU,!J (u + ¢x) dxdy = 01
which implies
2
%(u?—l,j + 6ul; +uly ;) + Ry 501 — D2ip) =0.

Integrating the v equation in Eq.2 over an interior V volume yields a
similar discrete expression involving nodal values of v" and ¢". Integrating
the p equation in Eq.2 over the volume in P centered at the interior o
node (2, j); denote this volume by P; ;; we get

Jp,, (uz + 'vy) dzdy = fp,, fdzdy
which implies
h(u?,j—l - u?—l,j—l + ”?—1,;’ - ”?—1,5—1) = h*f; ;-

Here, f; ; is the value of f at the ¢ node (i,7), which results from assuming
that f is (approximated by) a piecewise constant function on P. The only
remaining part of the discretization involves integrating the u equation in
Eq.2 over the “half size” U volumes on the left and right boundaries, and
similarly integrating the v equation in Eq.2 over the “half size” V volumes
on the lower and upper boundaries. We illustrate this process by
integrating the u equation in Eq.2 over the volume U, ; that has the
boundary u* node (1, ) as the midpoint of its left edge. We have

fo,, (u+ ¢.) dedy ~o,
which implies

%(3“?,_1 +uf ;) + h{(#% ;41 — ¢tinm) =0
or

%3(3'“?,1‘ + “g,j) + h( g,j+1) = h¢?,j+1-

Note that d){"j .1 is on the boundary and hence is known. To summarize, the
discretization has produced for each U volume a discrete version of the u
equation in Eq.2, for each V volume a discrete version of the v equation in
Eq.2, and for each P volume a discrete version of the p equation in Eq.2.

b. The Multigrid Algorithm We assume that the reader is familiar with
the fundamentals of multigrid methods; good references are [9],[8], [10]. We



consider a family of uniform square grids 2* that cover our region §, where
h denotes the mesh size. Fig. 2 shows a coarse grid Q*, with twice the
mesh size of the grid Q" in Fig. 1. On each grid Q*, we can apply the
Finite Volume Element discretization process, and we write the discrete set
of equations that this process generates as

LRzt = F*, (3)
where z* = (u*,v*,¢")t and F* = (fu", fv*, f*)! and the unknowns, u*, v*,
and ¢", are the nodal values of the corresponding functions on the grid Qh.
Note that the values of ¢ at nodes on the boundary are known so they are
not included in ¢"; however, as mentioned in the last section, these
boundary values of ¢ do appear in the equations generated by integration
over the U and V volumes near boundaries, resulting in the possibly
nonzero terms fu® and fv" in Eq.3. In this section, we now define the basic
components of relaxation, interpolation, and restriction that are necessary
to implement a multigrid algorithm.

For the equations on a grid ", we use a distributive relaxation process
similar to that presented in [10]. We can think of relaxation as a three step
process. First, we sweep over all of the 4" nodes, change the value of uf’ ; 50
that the U equation at (3, ) is satisfied. Second, we perform a similar
Gauss-Seidel relaxation of all of the V equations. Note that these two steps,
the U and V relaxation, are independent of each other and could be
performed in parallel. Finally, we step over the ¢" nodes and change the
value of ¢7; and the values of 4" and v" that lie on the edge of the volume
P, ;, namely u?, ,, uf , . vF . and v}, ; ;. We change these five
unknowns so that the P equation at (7,7) is satisfied and so that the
residuals of the U equations at (i,7 — 1) and (¢ — 1,j — 1) and of the V
equations at (¢ — 1,5) and (i — 1,j — 1) are unchanged. To allow
vectorization, the Gauss-Seidel relaxation performed in each step is done in
a red/black ordering.

For defining interpolation operators, we use the same principles as outlined
in [8]. The Finte Volume Element discretization is based on finite element
spaces for the variables u*,v"*, and ¢", so we can simply use the relationship
between the finite element spaces on the different grids to define
interpolation. To define the interpolation operator for ¢, which we denote
as I (d));‘h, we note that ¢?* is constant on the grid 2h volume Py ;.
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Referring to Figs. 1 and 2, we thus have the following characterization of
¢* = I(¢)5n 9™
ho=gh =@t =¢", =%
1,7 i+1,j 1,7+1 i+1,5+1 I1,J
To define the interpolation operator for u, which we denote as I (u)gh, we
note that 42* is linear in = and constant in y on the grid 2k volume Py ;.
We thus have the following characterization of u* = I(u)s u*. (See Figs. 1
and 2)
u?wl,j-l = u?—l,j = U%’il,J—l
u?+1,j—1 =Uin,; ~— u%’,LJ—l
u?,j—l = u:‘; = 1/2(7‘21’11,.14 +ui’y ).
The definition of the interpolation operator for v is similar.

For defining restriction operators, we again use the same principles as
outlined in [8]. In the correction scheme multigrid algorithm, which we use
here, restriction operators are used to transfer right-hand sides and
residuals of equations, not the unknowns themselves. The definitions of the
restriction operators are based on the relationship between the volumes on
the various grids. The idea is to lump several of the grid h right-hand sides
to produce the grid 2Ah right hand sides. To define the restriction operator
for the P equation, which we denote as I (P)ih, we note that a grid 2h
volume P; ; wholly contains four grid h P volumes. We thus have the
following characterization of f%* = I(P)>" f*  referring again to Figs. 1 and
2:

Ty = fli+ fiag t flia + flaa

To define the restriction operator for the U equation, which we denote as
I(U)3*, we note that a grid 2h volume Uy ; in the interior of  wholly
contains two grid h U volumes and half of four others. We thus have the
following characterization of fu®* = I(U )ih fu®, again referring to Figs. 1
and 2:

2
fur 1= fu?+1,j + fu?+1,j-1 + 1/2(fu?,j + f“?,j-1 + f“?+2,j + f“?+2,j-1)-

The relationship between U volumes at boundaries is different; for example,
the grid 2h U volumes on the left boundary of 2 wholly contain two of the
grid A U volumes and half of two others, yielding Figs. 1 and 2:

fu%f‘.]—l = fu?,j + fu?,j—l + l/z(fug,j + fug,j-—l)'



The definition of the restriction operator for the V equation is done in a
similar fashion.

3. Tests of the Mixed Method Algorithm
A standard approach to Eq.1 is to solve a discrete equation based on
cell-centered finite differences for approximating ¢, then to use simple
differencing of this approximation to get the components of its gradient.
We performed some numerical tests to investigate what advantage, in terms
of accuracy, the mixed method provides over this standard approach. These
tests were for problems with exact solution
é(z, vy, z) = sin(k1x) sin(kay) sin(ksz) with Q = [0, #]3. By varying ki,k2,
and k3, we were able to see the effect that oscillations in the solution had
on the accuracy of the methods. Below are results for some of these tests
on a grid with 32 cells in each direction.

MIXED METHOD | STANDARD METHOD
k 1 k2 k3 ¢err (¢x ) err ¢err (¢x ) err.
1{1|1|79FE—-4|815E—4|158E—-3| 815E -4
116|116 |147TE—-1|150E—-1|459F—-1| 472E-1
16|11 ]|146E—-1|361E—-0]|456F—1| 3.53E-0
16 |16 |16 | 147TE—- 1| 360E -0 | 460E—-1| 3.60E—-0

Here, ¢err and (@ )err are pointwise I norms of the error in ¢ and its =
derivative scaled by the volume term h®. These results are indicative of
results seen for other combinations of k;,k,, and k3. For smooth solutions,
the methods give nearly identical results. However, for oscillatory solutions,
the mixed method gives more accurate results, particularly for ¢.

4. Incorporation of the Mixed Method Solver into
the Three-Dimensional Hydrodynamics Code

a.The Physics and the Code The physics included in the present code
consists of a perfect fluid with an adiabatic equation of state formulated in
a generally covariant manner. The interval between events in spacetime is
represented in the present work in the form

ds* = —(a® — Bif))dt* + v (da’ + B'dt)(dz’ + dt). (4)

The function « is called the lapse and represents the lapse of proper time at
a given spatial point. The vector field 3¢ is called the shift vector and
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determines how much the spatial coordinates shift from one ¢t = constant
slice to the next infinitesimally later one. The second rank symmetric
tensor field ;; is the metric tensor of the spatial geometry. In the general
theory of relativity[12], the four-dimensional geometry of spacetime is
dynamic and the lapse, shift, and three metric are related to the
kinematical description of the coordinates of the observer and the spatial
geometry. The fluid energy-momentum tensor must obey a local
conservation law in order to be consistent with Einstein’s theory. When
supplemented with the conservation of Baryons, the conservation laws can
be written in the following form:

Rest-mass conservation

1 4, 1 0 ,..,
T A 7d T = -2-d N = O 5
poes 0L R = VALY (5)
Internal energy equation
1 8, : 0 I d, 1 1 1 .
2 (yie) + —r=—(yrev') = ~P(—r =(7? W'
a’y% &(726) + a’),% ax, (’YZB’U ) (a'y% at(’YQ W) + a’y% 6331' (7 v ))
(6)
Momentum equation
1 6 1 1 6 1 i aP Ina
— T = 25, — {72 5; = —a d P -t
a'y'y’ Bt (72 SJ) + a’y’} acc-’ (72 SJU ) 316-7 * ( tet W)Wazm

S.' 6;@‘ 1 Sk Sl 3’7“

adri 2W (d+e+ PW) 0x7
The variables d, e, and S;, which are used in the code, are defined as
follows: d = pW, e = peW, and S; = (p + pe + P)u;. Here d, e, and S; are
respectively the coordinate mass density, internal energy density, and
covariant components of the relativistic momentum density. Eq.(5-7) are
the equations of general relativistic fluid dynamics in a general background
spacetime. Since the present paper is restricted to the study of phenomena
with weak gravitational fields, we introduce the following Newtonian
approximations to the lapse, shift, and three-metric in Cartesian
coordinates:

(7)

a ~ 1+¢ (8)



g 0 (9)
Yii = by (10)

The scalar field ¢ is the Newtonian gravitational potential and must satisfy
the Poisson equation

1

V¢ = 47Gp, (11)

in the computational volume and Dirichlet boundary conditions on the
volume edges.

With the Newtonian approximation to the geometric variables it then
follows that the self-gravity of the fluid contributes to the change in the
momentum density through the term pVa. The value of « itself enters
several places in the fluid equations. Thus, a complete characterization of
the self-gravitating fluid dynamics requires both the lapse and its gradient
vector. It is these quantities that our mixed method computes in a robust
manner. Concerning the elements that constitute the hydrodynamics part
of the code, the methods used may be characterized as explicit finite
volume schemes. The physical variables d, e, and S; are the fundamental
quantities. These variables are discretized on a staggered grid system with
the conventions that scalar variables such as density are stored at zone
centers, while vector variables are centered on the faces of the zones. The
biggest challenge is by far to treat the advection of the physical variables as
accurately as possible. This is especially true for the astrophysical
applications, since complex flows abound. We want the code to be able to
detect and track shocks adequately. The advection method implemented in
the code is based on a monotonic advection algorithm due originally to Van
Leer [11]. It is robust and tracks shocks reasonably well. The code uses
artificial viscosity to smooth developing discontinuities over a few zones.
For this we use an artificial viscosity pressure, which is a combination of
linear and quadratic functions of the monotonized four-velocity differences.
The code uses an adiabatic equation of state of the form P = (I' — 1)pe,
where T is the parameter that characterizes the equation of state and can
itself be a function of the thermodynamic variables and position. For the
model stars we discuss here, I' is chosen to be a constant. The overall
structure of a single computational step of the code is described in [7} and
illustrated as follows:
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At the end of the computational éiep the fully updated physical variables
are available. The Poisson_Solver routine is invoked a.nd it is here that we
utilize our mixed method solver, which returns ¢ and V.- '

b.Application to Collision of Stars As a nontrivial application of the
code, we present a summary of the results of using the mixed method
Poisson solver in the simulation of the collision of two stars which are
initially in equilibrium. The initial data were chosen so that the mass
density and energy density correspond to two equilibrium spherical stars.

We have chosen the n = 1 _polytropic equation of state. This equation of

‘state has the following functional forms for the 1n1t1al mass density and

energy density: d = d 5%—) and e = ¢ (_6{) where . .f = 'm"/ ro and 7o i5
the equilibrium radius of the star. The two model stars were placed with
their centers  displaced in the z = 0 plane. We show here the results of -
simulations in which the radii were chosen equal to 0.26 R, and the._
central mass density dy equal to 6.6g/ cm®. The central temperature of e: each
star was chosen 1o be 4.0e06 K. Tﬁe ‘simulations shown here were all done

with a (66)% grid. All computations were performed on the Ohio
~ Supercomputer Center’s Cray YMP8/864. The hydrodynamics part of the

code has been highly vectorized.

(IR



Fig. 3a shows the contours for the initial potential and its gradient
components in the z = 0 plane for a run of an off-center collision. The stars
were chosen initially to have a relative velocity comparable to the orbital
velocity. Fig. 3b is a plot of the density contours and velocity field in the
z=0 plane. Subsequent motion is induced by the combined effects of the
initial momentum and the self-gravity of the two stars. Because the stars
attract each other, they develop accelerations toward each other and the
hydrodynamics that results alters the density and energy distributions.
Typical simulations were run for at least on the order of the gravitational
free-fall time. Given the combined interactions of the hydrodynamics with
self-gravity, we expect disruption of the two stars if the collision is
sufficiently violent. Figs. 4a,b show respective snapshots of the potential
contours and gradient and density contours and velocities for late times in
the off-center collision.

We conclude from these simulations and others that the mixed method
Poisson solver produces physically acceptable results when combined with
the three-dimensional hydrodynamics. This code is currently being used to
simulate higher resolution runs and other multiple-star systems. We will be
using the present code to treat the collision of two neutron stars and
compute its final state and the amount of gravitational radiation emitted
by such systems. Such computations are of importance because they can
shed light on the astrophysics of the mergers of neutron stars as well as
provide potentially important benchmarks of how much gravitational
radiation should be expected from such encounters.
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COEFFICIENTS+
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SUMMARY

New coarse grid multigrid operators for problems with highly oscillatory coefficients are
developed. These types of operators are necessary when the characters of the differential
equations on coarser grids or longer wavelengths are different from that on the fine grid.
Elliptic problems for composite materials and different classes of hyperbolic problems are
practical examples.

The new coarse grid operators can be constructed directly based on the homogenized
differential operators or hierarchally computed from the finest grid. Convergence analysis
based on the homogenization theory is given for elliptic problems with periodic coefficients
and some hyperbolic problems. These are classes of equations for which there exists a
fairly complete theory for the interaction between shorter and longer wavelengths in the
problems. Numerical examples are presented.

- - INTRODUCTION

Multigrid methods are usually not so effective when applied to problems for which the
standard coarse grid operators have significantly different properties from those of the fine
grid operators [1,3,7-9,11-12]. In some of these problems the coarse grid operators should
be constructed based on other principles than just simple restriction from the finest grid.
Elliptic and parabolic equations with strongly variable coeflicients and some hyperbolic
equations are such problems. One feature in these problems is that the smallest eigenvalues

*This work was partially supported by grants from NSF: DMS 91-03104, DARPA: ONR N00014-92-J-
1890, and ARO: ARM DAAL03-91-G0162.
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do not correspond to very smooth eigenfunctions. It is thus not easy to represent these
eigenfunctions of the coarser grids.
We shall investigate elliptic equations with highly oscillatory coefficients,

T

0
2 2. o(®) ) = Foh a5(e) = (e,) o)

€

with a;(z,y) strictly positive, continuous and 1-periodic in y. This is one class of the
problems discussed above for which there exists a fairly complete analytic theory such that
a rigorous treatment is possible. This homogenization theory describes the dependence of
the latge scale features in the solutions on the smaller scales in the coefficients [2,11]. We
shall consider model problems but there are also important practical applications of these
equations in the study of elasticity and heat conduction for composite materials.

In this paper we analyse the convergence of multigrid methods for equation (1) by
introducing new coarse grid operators, based on local or global homogenized forms of the
equation. We consider only two level multigrid methods. For full multigrid or with more
general coefficients the homogenized operator can be numerically calculated from the finer
grids based on local solution of the so called cell problem [2].

In a number of numerical tests we compare the convergence rate for different choices of
parameter and coarse grid operators applied to a two dimensional elliptic model problem.

The convergence rate is also analyzed theoretically for a one dimensional problem.
If, for example, the oscillatory coefficient is replaced by its average, the direct estimate
for multigrid convergence rate is not asymptotically better than just using the damped
Jacobi smoothing operator. The homogenized coefficient reduces the number of smoothing
operations from O(h=2) to O(h~1%/7log k). When h/e belongs to the set of Diophantine
numbers (4], ergodic mixing improves the estimate to O(h-%/5log h). The step size is h and
the wave length in the oscillating coefficient e.

These results carry over to some but not all hyperbolic problems. A numerical study
of using hyperbolic time stepping with multigrid inorder to compute a steady state gives
similar results to the elliptic case.

TWO DIMENSIONAL ELLIPTIC PROBLEMS
Elliptic problems on the form (1) will be considered,

subject to Dirichlet boundary condition usq = 0. The function a¢(z,y) = a(z/€,y/¢) is



strictly positive and 1-periodic in = and y. From homogenization theory [2] follows,

max |y, —u|—0, as e€—0.
(zy)eq

where u satisfies the following effective equation,

0%u 0%u 0%u
—Au@ —(A12+A21)‘0W—A225? =f($>y)a (xay)e‘Qs (3)

subject to the same boundary condition. Here,

Ok ; o
Ay = /a(sl, 59)(6;; — a—;)dsldsz, 1,7 =1,2,
and the periodic functions k; are given by,
da(sy, .
=V, a(s,8)V,k; = %, J=1,2.
S .

J

For the numerical examples we shall choose a special case with diagonal oscillatory coeffi-

cient,
z—Y

)- (4)

From (3), we know that the corresponding homogenized equation is,

a(z,y) = a(

(1 + a) 0%u _, 0%u _(#+a)62u

5 7. (u—a)axay 5 32y=f(x,y), (5)

where . = m(1/a¢)~1 and @ = m(a¢). Here, the mean value m(f) of a e—periodic function
is defined as,

1 €
m(f) = - [ f(@)do.
For convenience, we introduce a brief notation of a N x N block tridiagonal matrix 7T,

Tll T12

Ty, T,y T
T = Tridiag|T,_ 1, T T vamy = | - .0 .7

TNN—I TNN
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Numerical Algorithm

The discretization of (2) combined with (4) is

— D2k D= ul — DYy bl DY ul, = fl. (6)
where a’; =a‘(z; — 2 —y;), bf‘J =af(z;—y; + %), i,j=0,---,N. D, and D_ are forward

and backward d1v1ded differences, respectively; b = % denotes the grid size. Using vector
notation, we can rewrite (6) as

Lc hUc h — F
where I
Le,h = h—Q'TT‘ZdZG.g[BJh l’A B ](N 1)x(N-1) (7)
Ah = Trzdzag[—a _ ~, i 1] + a + bh + b” 1’ ——aij](N_l)x(N_l)

Blisa diagonial matrix, denoted by B} = Dzag[ b”](N 1)x(N-1) and

— h h
Up= (“117"‘}211’ T UN T "u?N—vugN—x’ T '7u’1{/—1N—1)T
13 h T
(fu’ 210 ’fN—u’ ’ ’f 2N—1’ ) ’fN-lN—l)

For simplicity, we only consider the two-grid method. Denote the full iteration operator of
this method by M. It is defined by,

M=8(I-ILLFIEL, )87, (8)

where the restriction and interpolation operators are given, as denoted below, by the weight-
ing restriction and bilinear interpolation operators, respectively,
Jreaf” 121
H=—|2 42|, Ih=7|24 2
16 H
1211, 1214,
The smoothing iteration operator S is based on the damped Jacobi iteration,

S = ] - WhQLc'h. (9)

The coarse grid operators Ly is one of the following operators:
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Global Homogenized operator: which is the discretized form of (5)

Written in matrix form,

1
LH:mTrzdzag[Bﬁl,Af,BjH}(N (X _1); (10)

5=

where +a +a
.. . omta . Bkta
AJH = Trzdzag[——Q—,Q(,u +a),— 2 ](%_1“(151_1),

—p pta a—p
4 2 7 4 f

Local Homogenized operator: Ly has the same form as (10), except the entries for AJH, BJ.H

B].H = Tridiag[— z

coming from the local discretized values of a (z — y),

1 e
Ly = —ﬁiTrzdzag[Bﬁl,A?, B;{](g_l)x(%_l), (11)
where
AF = Tridiag[—all ,afl -+ afl + 67 + 01, —alll v ), x 1),
BJ.H = T'ridiag[—cﬁl, —bZ,Cf](g_l)x(lg__l)»
with
h h L ph h h ok -
B — b+ b+ 26(bl, b0 _,) o = af, +al_, +26(al, al ;) e
i 4 A 4 o2

8(ey, ¢g) is defined to be C%Ci—%

Reduced Local Homogenized operator: Ly has the same form as in (11), except here we ig-
nore the cross term Dz Dg. That means B is a diagonal matrix, Bff = Diag[—bg](g_l)x(g_l),

|
Ly = ']'ﬁT”dwg[BﬁpAfI, By _1yx(& 1) (12)

Sampling operator: L, has the exact form as L., but values a;;,b;; are defined on the
coarse grids,

LH = Lc,H (13)
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Variational operator:

Ly =IFL, I (14)

Numerical Results

In practice, it is not always easy to calculate the spectral radius p(M). Therefore, we
study the mean rate [14] of convergence under different coarse grid operators Ly. The
mean rate of convergence is defined by

LC ’U,i —_ 1
— (” b : fh”h = (15)
| Lent! = falln
where i is the smallest integer satisfying ||L, yu’ — fi]ls <1 x 10-5.
In Figure 1, a¢(z —y) = 2.1+ 2sin(27(z —y)/¢). We plot p defined by (15) as a function
of v by taking ¢ = v/2h, and w in (9) is 0.095.

0 5 10 15 20 25 0 5 10 15 20 25
(1.2) N=32

0
00 5 10 15 20 25 0 5 10 15 20 25
(1.3) N=64 (1.4) N=128

Figure 1: p as a function of . Dotted line is for (10), solid line for (11), dashed line for (13}, and dashdot for
(12), + for (14). (1.1)-(1.4) are for different number of grid points N.
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It is clear that the coarse grid operators derived from the homogenized forms (10)
and (11) are superior. The effect is more pronounced for large ~y when the eigenspace
corresponding to large eigenvalues of L, is essentially eliminated. For the practical low
~ case, a study of the impact of the choices of I} and I is needed. In this paper we are
concentrating on the asymptotic behavior (large 7). Different It and I operators are
briefly discussed for the one-dimensional problem.

In Figure 2, we plot p as a function of the variable o, where Ly(a) comes from the
discretized operator —aff D7 D* + a(p —a)DsDg — bgDiD’i, w = 0.095 and € = v/2h.

o9

ok

os}

0.4t

o3tl—— —

Figure 2: p as a function of «. Here N = 64 and v = 12. "% denote p under the different choice of Normal

and Local Homogenized coarse grid operator, respectively.

From Figure 2, we get further evidence of the importance of using the correct homoge-
nized operator. Techniques based on one-dimensional analysis does not contain the mixed
derivative term [1].

In order to isolate the influence of the coarse grid approximation we have kept the
smoothing operator fixed. It obviously also affects the performance. If we use Gauss Seidel
iteration method in (9), the convergence rate can be improved. In Table 1, we test the
same coeflicient a¢(z —y) = 2.1+ 2sin(27(z —y)/€). Taking N = 128,¢ = V2h, we compare
the convergence rate by choosing damped Jacobi iteration and Gauss Seidel iteration.

v 3 6 7 3 9 10 11 12
Jacobi || .5929 | .5519 | .5173 | .4863 | .4579 | .4349 | .4140 | .3950
G-S 4545 | .4221 | .3922 | .3703 | .3491 | .3304 | .3158 | .3008

Table 1: Spectral radius, two dimensional case
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ONE DIMENSIONAL PROBLEMS

The one dimensional equation is useful as a model for which a more complete mathe-
matical analysis is possible. -
Consider the following one-dimensional elliptic boundary value problem with a periodic

oscillatory coefficient,

- —?z‘(a:) =1, O<z <1 71716(0) =u(1) =0, 7 (16)

where a¢(z) = a(f) and satisfies thé same assumption as above. As ¢ — 0, u, converges
strongly in L, to the solution u of the homogenized equation,
M <<t (1/a€)"? (17)
—a——:; =1, T , a=m{l/a®)"".
dz? ,

Subject to the boundary conditions ¢(0) = ¢(1) = 0.
Numerical Algorithm

Let the difference approximation of (16) be of the form:
- a‘(:cj+%)(u;.‘+l - uf) + a‘(acj_%)(u;‘ — u;?_]) =1, j=1,---,N-1  (18)
In matrix form, (18) can be written as
Lepu =1, wh=(uh-.- ul T
where =3
Lep = ﬁT”'diag[—ai—la a;i_1 +ai, @i (N x(N-1) (19)

with a; = a¢(z; — %).
We first consider a two-grid method by applying standard restriction, standard inter-
polation operators and Jacobi smoothing iteration.

The coarse grid operator Ly will be one of the folloﬁfiﬁg;'

Homogenized operator:

m(1/ac)-1 .
Ly = Tdezag[—l,Z, —1]('7"-1)x(§—1) (20)
Averaged operator:
m(a¢) . .
Ly = g Trzdzag[—l,?,—1](17\7,1))((%_1) (21)
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Sampling operator: L, 5 has the exact form as L, but only every second a; value is used,

Ly=L.n (22)

Variational operator:

Ly =TIHL ,Ih. (23)

Convergence Theory

The theorem below on the convergence rate is too pessimistic in the number of smooth-
ing iterations necessary. However, the analysis still gives insight into the convergence
process and the role of homogenization. With Ly replaced by averaging (21) the same
analysis results in ¥ = O(h~2) which means that multigird does not improve the rate of
convergence over just using Jacobi iterations. This follows from the effect of the oscillations
on the lower eigenmodes. It should also be noticed that in the case (ii), the solution of L
is much closer to those of Ly, see [11].

Theorem 1 Let M be defined as in (8), with Ly defined by (11). There exists a constant
C such that,
p(M) S Po < 17

when either one of the following conditions is satisfied:
(i) v > Ch=1=3/TInh

(1i) the ratio of h to € belongs to the set of Diaphantine number, and v 2 Ch-1-1/5]nh,

For details of the proof, see [10]. An outline is as follows . Separate the complete eigenspace
of L., into two orthogonal subspaces, the space of low eigenmodes and that of high eigen-
modes. After several Jacobi smoothing iterations in the fine grid level, the high eigenmodes
of the error are reduced, and only the low eigenmodes are left. Combining eigenvalue analy-
sis with homogenization theory [11], one may realize that the low eigenmodes of the original
discrete operator are close to those of the corresponding homogenized operator. We then
approximate them by the corresponding homogenized eigenmodes and correct these in the
coarse grid level.
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Numerical Results

In Flgure 3.1 and Flgure 3.2, a‘( ) 21 + 2s1n(21r7:c/e) We plot the analogous graph

to Flgure 1. Here € = \/_h and w in (9) is 0. 1829 In Fxgure 33 and Figure 3.4, a*(z) =

o.z o.2
o5 io 26 °c 10 20
C3.1) N=16 (3.2) IN=128
A .-

o
10

3.3 N=1sS

(23). (3.1)-(3.4) are for different number grid points N.

of (18) under the choices of coefficients in Figure 3.
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Figure 4: (4.1) and (4.2)are the graphs for a¢(z), where » are the discretized values. (4.2) is the solution.

o.3s

o.>

0.23

.2

o.3

0,03

10
C3.4) =128

Figure 3: p as a function of v. Dotted line is for (20), solid line for (21), dashed line for (22), and dashdot for

‘In Figure 4, with the assumptions in Figure 3.3-3.4, we plot a (a:) and the apprOXImatlon

T g2 Solutiona

Dashed line is for (17). Dashdot line is for —m(a®)uzz = 1 and line with circles is for (18).
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In Figure 5, we plot p as a function of the variable a, where Ly = aAg. In (5.1),
as(z) = 2.1 4+ 2sin(27z/€), w = 0.1829 and € = V2h; In (5.2), a¢(z) = 20.1if z/e — [z/€] €
(0.7,0.9); otherwise,0.1, w = 0.0373 and € = 4h.

LRV 2 §

-1y = . G O3

PRVIE Wl T4

PRIT e B B Ar d

1

=2
<s.1>

-
<s.2>

Figure 5: p as a function of o. The homogenized value ah = m(1/a€)~! and the arithmetic value av = m(a¢)
are given. Here v = 10 and N = 256.

In Figure 6, we present the convergence u, — u, as € — 0 by giving the numerical solutions
of (16) and (17). Recall that our goal is to solve the oscillatory problem and to use the
homogenized operator only for the coarse grids.

.18 - D
18|

L4 -

0000

.12 =

- ;
o.1 7

s-1>

Figure 6: Solid lines are the approximations for (18), dashed lines

i8

1S

14

¢ 008

12

oO.1

O.OsS

.04

0.0

when € = 0.2 in (6.1) and ¢ = 0.1 in (6.2). Here N = 500.

(5.2>

are the solutions for (17}, respectively,
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HYPERBOLIC PROBLEMS

Time evolution of a hyperbolic differential equation can be used for steady state computa-
tions. This is common in computational fluid dynamics, [6]. In multigrid this means that
hyperbolic timestepping replaces the smoothing step. There are fundamental differences
with standard multigrid for elliptic problems but some of our earlier discussions carry over
to the hyperbolic case. The dissipative mechanisms for hyperbolic problems are mainly the
boundary conditions. Consider using the model problem,

%u, 0 Ou,
5 _6_;&((33) = f(z), 0<z<1 (24)

or
as the smoothing equation in multigrid for the numerical solution of (16), subject to the
boundary conditions

8u,(1)
0z

The equation (24) must have boundary conditions which are dissipative but reduce to (25)
at steady state, see [5],

u (0) = 0, — 0. (25)

Ou(1,1) Ju(1,1)
o Ve T =

The initial condition should support the transport of the residual to the dissipative
boundary z =1,

w (0,t) =0, 0. (26)

u(z, i) = ul(z) given,

u (z, i+ At) = ul(z) — Aty/as(z) DEud(z).
Note that the initial condition approximates the transport equation u, + y/au, = 0. The
difference approximation of (24) needs a low level of numerical dissipation.
The homogenization theory of [2] is also valid for equation of the type (24). A numerical
indication is seen in Figure 7.
The positive effect of multigrid on the convergence rate does not carry cver to problems
for which the steady state is hyperbolic or contains hyperbolic components. If,

Ou, du, Ju,

=0
ot ta Oz +5 Jy
is used for the equation,
Ou. , g% _ € [0,1]
44 81' ay ] ‘Tay ’ )

u, ts 1—periodic in y, uJ0,y,t)=a‘(y).
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The coarse grid operator must resolve all scales of a¢ to required accuracy in order to
produce multigrid speed up. More on this phenomena will be reported elsewhere.

Numerical Results

In Figure 7, take 50 smoothing steps. Coefficient a(z/¢) is the same as in Figure 1.

80
60 3000
40} J 2000
2t /S e T ] 1000
% - 20 40 60 0 5 10 15 20
(7.1) (7.2
80 80}
60} 60
40t ; 40
20} ; 20t
00 20 40 60 00 20 40 60
1.3) 7.4

Figure 7: (7.1) Solutions: Solid line is the solution of steady state; Dashed line for homogenized solution;
Dashed dot line for average solution. (7.2) Residue as function of two level multigrid cycles. (7.3) Approximate

solutions after each two level cycle. {7.4) Approximate solutions for time evolution equation.

CONCLUSION

Elliptic equations and some hyperbolic equations with highly oscillatory coefficients
have been studied. We have shown that the homogenized form of the equations are very
useful in the design of coarse grid operators for multigrid.
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The evidence is from a sequence of numerical examples with strongly variable coefficients

and to some extent from theoretical analysis. The result is clear in the asymptotic regime
of many smoothing iterations.

The impact on the coarse grid operator from the numerical truncation error and the

interpolation operator needs to be asessed in order to improve the performance in the
regime of very few smoothing iterations per cycle.
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APPLICATION OF MULTIGRID METHODS TO THE SOLUTION OF LIQUID CRYSTAL
EQUATIONS ON A SIMD COMPUTER e~ D éé

Paul A. Farrell*, Arden Ruttan and Reinhardt R. Zeller
Department of Mathematics and Computer Science, Kent State University
Kent, OH

SUMMARY

We will describe a finite difference code for computing equilibrium configurations, of the
order-parameter tensor field for nematic liquid crystals, in rectangular regions, by minimization of
the Landau-de Gennes Free Energy functional. The implementation of the free energy functional
described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through
fourth order. Boundary conditions include the effects of strong surface anchoring. The target
architectures for our implementation are -SIMD machines, with interconnection networks which can
be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative
efficiency of a number of iterative methods for the solution of the linear systems arising from this
discretization on such architectures.

INTRODUCTION: LIQUID CRYSTALS

Liquid crystal based technology plays a key role in many devices such digital watches and
calculators, active and passive matrix liquid crystal displays in laptop computers, switchable
windows using Polymer Dispersed Liquid Crystals (PDLCs), thermometers, temperature sensitive
films and materials such as Kevlar which employ high-strength liquid crystal polymers. In addition
they are likely to play a key role in developments such as High Definition Television (HDTV) and
optical communications and computing.

Liquid crystals are so called because they exhibit some of the properties of both the liquid and
crystalline states. In fact they are substances which, over certain ranges of temperatures, can exist
in one or more mesophases somewhere between the rigid lattices of crystalline solids, which exhibit
both orientational and positional order, and the isotropic liquid phase, which exhibits neither.
Liquid crystals resemble liquids in that their molecules are free to flow and thus can assume the
shape of a containment vessel. On the other hand they exhibit orientational and possibly some
positional order. This is due to the intermolecular forces which are stronger than those in liquids

This work was supported in part by the Advanced Liquid Crystalline Optical Materials (ALCOM) Science and
Technology Center at Kent State University under DMR89-20147.
2This author was supported in part by The Research Council of Kent State University.
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and which cause the molecules to have, on average, a preferred direction. Liquid crystals may exist
in a number of mesophases, such as the nematic. smectic. cholesteric phases (see [3]).

In this paper we shall confine ourselves to nematic liquid crystals, which exhibit orientational but
no positional order. We wish to study the orientational order and the inter-molecular forces that are
present in a nematic liquid crystal material. To do this we need a quantitative measure of the
degree of order and of the total free-energy (sum of inter-molecular forces) in the system. A typical
liquid crystal molecule is long, rod-like and rigid. Its direction in space is given by the unit vector

n = (n1,n2,n3). The molecule points in the n or —n direction with equal probability; therefore,
there is no up or down direction. The director fi = (n1,n2,n3) is also a unit vector showing the
preferred average direction of the molecules at a point in the sample. The degree of order of a liquid
crystal material at a particular point in the sample can be measured in terms of the statistical
average of the angles 8, which molecules make with the director. A more common measure that is
used is § :=< 3cos?# — 1 > /2, where <> is a thermodynamic or temporal average. A value close
to 1 indicates a strong ordering of the molecules as is present in a crystalline solid. Values near zero
indicate random ordering, such as exist in an isotropic liquid. The order parameter S depends on
the temperature 7.

Most early theoretical and computational results on liquid crystals employed the Oseen-Frank
theory. This assumes that the degree of order S is uniform throughout the material and seeks to
calculate the equilibrium configuration of the material by obtaining the director field which
minimizes the free energy functional

F(n) .= % /Q{KI(V .n)2 + Ky(n-V x n)? 4+ Ki|n x V x n*}.

In an infinite bulk the preferred configuration for the director field is one of uniform parallel
alignment. This will not normally be the case in practice, however, due to the effects of boundaries
and external fields. This theory, while instrumental in predicting many important phenomena in
liquid crystal physics, has some deficiencies. In particular, it is inadequate to model behavior close
to a defect, where the order may not be uniform and the director may not be well defined. For
example, in the presence of a radial field about a line defect this theory will exhibit a singularity at
the core. For this reason there is increased emphasis on the more computationally complex
Landau-de Gennes formulation.

THE LANDAU DE-GENNES FORMULATION

The Landau-de Gennes formulation describes nematic liquid crystals by a 3 x 3 symmetric, traceless
tensor order parametér Q. The local orientational information is given by the eigenvectors and
eigenvalues of @ at each point. Several behaviors can be distinguished by considering the relative
magnitudes of the eigenvalues. The material is said to be uniazial if @ has a unique largest
eigenvalue, with the two other eigenvalues equal to minus half the largest one. The corresponding
eigenvector gives the locally preferred direction . Thus this is the case which can be represented by
the Oseen-Frank theory and in fact in this case Q can be represented in the form

Q= %S(3ﬁﬁT —I)
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where S is the value of the maximum eigenvalue and # is the normalized eigenvector associated with
it. The Landau-de Gennes formulation, however, is capable of representing more complex behaviors,
such as the hiarial case, where all three eigenvalues are distinct and the isotropic case, where all
three eigenvalues are equal and hence, because @ is traceless, all three are 0.

'To obtain the equilibrium tensor field again seek a tensor field Q that minimizes the free energy of
the system. In this case, the free energy can be expressed as

F(Q) = Fu(Q) + Fue(Q) = [ £l @) + [ fot(@),

where (2 and 0f represent the interior and surface of the slab respectively. In this implementation
we limit ourselves to strong anchoring on the surface of Q.

The term F,,(Q) gives an approximation of the interior free energy and is given by the following
expression, (see, for instance [18]):

1 1 1 1
fvol(Q) = '2‘L1Qaﬁ,-yQaﬂ,'y +'2"L2Qaﬂ,ﬁQa‘7,‘y +§L3Qaﬁ.’yQa7,ﬁ +§A trace(Qz)
—%B trace(Q®) + %C trace(Q?)? + %D trace(Q?)trace(Q®) (1)

-!%M trace(Q%)® + %M' trace(Q°)? — AxmacHaQapHp

where Ly, L,, and Lj are elastic constants, A, B, C, D, M, and M’ are bulk constants, and H,
AXmax, and E are the field terms and constants associated with the magnetic field respectively, and
the convention is used that summation over repeated indices is implied and that indices separated
by commas represent partial derivatives. The surface free density fo.s has the form

fout(Q) = 3Virace((Q - Qo)) 2

where @ is a tensor associated with the type of anchoring of the surface elements and V is
prescribed constant. In the strong anchoring case presented here Q cannot vary from @, and hence

Joq fout(Q) = 0.
For P € (Q, the tensor Q(P) will be represented in the form,
QP) = (Qap)l pur

= @(P)¢1 + @(P)d2 + g3(P)¢s + qa(P)ds + g5(P) s
30 0 430 0
= q(P) 0 3@ 0 +42(P)( 0 3% 0
o o0 =P 0 0 =P
0 2 0 0 0 ¥ 00 0
+aP)[ £ 0 0 |+a®)| 0 0 0 +q5(P)(o 0 £ |,
0 00 Y20 0 0¥ ¢
similar to that in Gartland [12], where {q,(P)}5_, are real-valued functions on f).
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THE PHYSICAL PROBLEM

The discretization of the full slab problem in which a finite difference approximation of the
equilibrium configuration of liquid crystals in a slab

Q={(z,9,2):0<2<a,0<y<b0<2<c}

is given in [7]. In this paper we shall confine our consideration to the case of an infinite slab.
Assuming the slab is infinite in the z-direction and imposing boundary conditions, which do not
vary with z, effectively reduces the problem to a two dimensional problem on a rectangle:

Q:={(z,y):0<z<q, 0<y < b}
The region is discretized in the standard manner by dividing the rectangle Q into I x J regions
(3, ) = {(z,y) : 1Az < z < (i + 1)Az, jAy <y < (5 + 1Ay}
for0<i<I—-1and0<j<J—1, where Az =a/I,Ay=>5/J.

The discrete interior free energy integral is now represented by

[ £(@ % 2 FraQas,35)) x volume(v(i 1), )

where the points P = (z;,y;), for 2; = iAz and y; = J Ay, are located in the lower left-hand corner
of the rectangle v(i, j). The derivatives with respect to x and y in (1) are approximated using
central difference approximations.

With the assumption of strong anchoring, a second order accurate approximation of the Landau-de
Gennes free energy density given by

F(Q) ~ Z fvol(Q(xi’yj)) X UOlume(v(ivj)) = Z h(xi’yj) (4)

%,j

is obtained. With the discretization (4), the problem is reduced to one of minimizing 3_; ; h{z:,y;)
overall choices of {g¢(z:,y;)}s;- This unconstrained discrete minimization problem can be attacked
in the standard way. That is, seek a solution of the non-linear system of equations

_ 3j Zi,j,k h’(xi’ yj)

g(’ei 7’).7) = 6qt?(x;.,y5) = 0) (5)

for0<1<I,0< j < J, and 7 =1...5. A standard approach to solving non-linear systems such as
these is to use a modified Newton method (see [6]).

Each iteration of the modified Newton method involves solving a linear system, whose matrix is the
Jacobian of (5), and then using that solution to update the iterate and the Jacobian, after which
the process is repeated. The system in question is a large symmetric system, but for certain values
of the temperature it may become indefinite. In addition, it may be expected to exhibit multiple
solutions, which may be either stable or unstable. The ultimate aim of this research is to track the
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minimal energy states as the temperature varies and to model the resulting bifurcations and phase
transitions.

THE WAVETRACER DTC ARCHITECTURE

The target architecture for this application is a massively parallel SIMD computer. A SIMD
computer uses multiple synchronized processing elements that operate in a lock-step fashion to
achieve parallelism. Each processing element (PE) performs the same operation at the same time on
its local data which is either stored in its own local memory or in a shared memory. A control unit
(CU) broadcasts instructions to the processing elements for execution. Each PE can be either active
or inactive during a particular operation. The control unit determines which PEs are to participate
by means of a masking function that either turns a PE on or off. Only the selected processors
execute the instruction, while the masked processors remain idle. The control unit normally buffers
data and instructions that will be broadcast to the processor array. A front-end computer provides
the programming environment along with the usual programming utilities such as a debugger and a
compiler. Program code is compiled and separated into scalar and parallel instructions. Scalar
operations are usually executed on the front-end, thus freeing the processor array to perform only
parallel computations. This architecture is considerably simpler to implement and program than
the alternative Multiple Instruction Multiple Data stream (MIMD) machines, in which each
processor can execute a different instruction. The SIMD architecture is normally used for massively
parallel machines, having between 4096 and 65536 processors, each with local memory, connected by
a special purpose high-capacity communication network. Early examples of this architecture
included the MASPAR MP-1 and MP-2 and the Thinking Machines Corporation Connection
Machine CM-1 and CM-2.

The platform chosen for this implementation was the Wavetracer Data Transport Computer (DTC),
situated in the Department of Mathematics and Computer Science at Kent State. This has a
number of unique features compared with previous SIMD computers. It was designed as a low cost
massively parallel processor, which can deliver “super-computing” levels of performance at
relatively low cost. Unlike previous SIMD machines, which had dedicated front-end processors for
storing scalar data and performing uni-variable (scalar) computations, the DTC uses a standard
workstation for this purpose as well as for compilation and storage of the program. Among
front-ends supported were the Sun 3, Sparc and Hewlett-Packard/Apollo workstations.

The DTC is connected to the front-end by means of the industry standard Small Computer System
Interface (SCSI), which is normally used to connect hard disks. The maximum bandwidth of this
interface is 5 Mbytes per second. The front-end sends instructions and data to a control unit, which
decodes these instructions and broadcasts both instructions and data to the processor array. The
array processors are semi-custom 1.5 micron standard cell chips. Each chip contains 32 one-bit
processors together with 2 kilobits of fast RAM for each processor, and associated control and
memory error-detection circuitry. In addition, each processor has access to between 8 and 32
kilobytes of private external dynamic memory depending on the configuration. Each circuit board
consists of 128 chips. The minimal configuration, the DTC-4, has one circuit board and thus 4096
processors. Other configurations are the DTC-8, with 2 circuit boards and 8192 processors, and the
DTC-16, with 4 circuit boards and 16384 processors.
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The processors on each circuit board of the DTC-4 can be configured either as a 16 x 16 x 16 cube,
for three dimensional application, or a 64 x 64 square, for two dimensional applications. The
DTC-8, can be configured as 16 x 32 x 16 cube or a 64 x 128 square, and the DTC-16 as a

32 x 32 x 16 cube or a 128 x 128 square. The assumption here is that most applications correspond
to physical problems in 2 or 3 dimensions, and thus a 2 and 3 dimensional interconnection network
is the most efficient for their solution. This is in contrast to the Connection Machine, in which the
processors are connected by a hypercube network.

There are a number of factors which affect the DTC’s performance. Firstly, the speed of the
front-end is a determining factor in the overall performance of the DTC, since all uni-variable
expressions are processed on the front-end and, in addition, all instructions are passed from the
front-end to the control unit. In addition, although the DTC provides efficient data movement
along the grid, the results of propagating data to the left, for example, are undefined at the right
boundary nodes. In addition, for problems with periodic boundary conditions it is desirable that
the interconnection network have wraparound, in which one can propagate values from one
boundary to the other. This is not provided. This also poses a problem for periodic geometries such
as spherical or ellipsoidal. One other inconvenience is that there is no microsecond timer on the
DTC and all timings must be done on the front end.

The traditional mode of solution of problems on a SIMD machine involves assigning one processor
of the array per node in the problem space. To provide the ability to consider problems with more
nodes than are available in the array, the DTC provides the ability to partition the memory of each
processor to provide a larger number of wirtual processors. There must be the same number of
virtual processors for each physical processor. The number of virtual processors per physical
processor is called the wirtual processor ratio. The controller automatically issues instructions to the
array once for each partition. Thus the execution time may be expected to increase linearly with
the virtual processor ratio.

The Wavetracer used in the results presented here was a Wavetracer DTC-4 with a Sun 3/50 front
end. Current codes are bring run on a Wavetracer DTC-16 with a Hewlett-Packard/Apollo 705
front end. For the minimization problem we are considering, each discretization point, P, of the slab
is associated with a virtual processor. Since the virtual processors are arranged in a rectangle or
cube, similar to the actual processors, this provides an entirely natural mapping of the domain onto
the rectangular grid of the DTC, provided an equal number of grid points are used in each direction.

At each point P of the slab the tensor order parameter Q is defined in terms of the 5 unknowns
{qe(P)}e=15. In our implementation, each set of 5 unknowns {ge(P)}e=1,5 is stored in a single virtual
processor. Associated with each unknown g.(P) there is also a corresponding row of the Jacobian
matrix. The nonzero constants of that row are also stored in the memory of the processor
associated with P. Each non-zero constant, in a row of the Jacobian associated with P, also
corresponds to another virtual processor (which in turn corresponds to a discretization point) to
which the values of {ge(P)}e=15 at P must be communicated when the Jacobian matrix is updated.
The set of processors with which a given processor, P, must communicate in order to update its row
of the Jacobian is called the stencil of P. If the stencil of any processor is large, then the process of
updating the Jacobian at each step of Newton'’s method will be expensive. Fortunately, the finite
difference approximation described here yields a relatively small and compact stencil. In the
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problem discussed below, the stencil will at worst consist of the nine points which correspond to
processors at most two steps away from the given processor.

SOLUTION OF THE MINIMIZATION PROBLEM

Non-linear iterations

The minimization of the free energy can be carried out by solution of the corresponding discrete
Euler-Lagrange equations given by (5). These give rise to a coupled system of five non-linear elliptic
partial differential equations. '

An alternative approach is to compute the Euler-Lagrange equations from [, f1(Q). Discretizing
these produces a system similar to (5). In this case central differences are used for the unidirectional
partial derivatives. Two alternative choices of discretizations for the mixed derivatives, both having
the same accuracy, are considered. One produces a seven and the other a nine point stencil at each
nodal point in the domain. Since nearest-neighbor communications are efficient on the Wavetracer’s
mesh array of processors, the communication costs are minimal. A reduced model in which

Ly =L3=D =M = M was also considered. This is significantly less complex and gives rise to a
five point scheme. Results for this case were considered in [7].

In all cases the resulting non-linear system of equations was solved using a (modified) inexact
Newton method. Let G : R® — R™ be a function representing the discrete Euler-Lagrange
equations. There are a total of 5(1 — 1)(J — 1) non-linear equations in this system. The function G
depends on the 5n unknowns

G(x) =G (q117"')Q§7q12""7QE?7"'1q?1'"QQ)a

where n = (I —1)(J — 1) is the number of nodal points. Let (x) be the Jacobian of the system of
equations. Newton type methods require solving a large sparse linear system G'(xz)si = —G(x})
and then updating the unknowns appropriately.

In theory, Newton’s method requires the exact solution to the linear system for each Newton
iteration. Inexact Newton methods use some form of iterative procedure to solve the linear system
approximately. Several iterative techniques such as SOR and multigrid were tested on this problem
with varying success. Note that the matrix A := G'(xy) is singular at bifurcation and turning points
and can be indefinite near these points. This can cause convergence problems when solving the
inner linear system. It is well known that in the early stages of the Newton or oufer iteration
process, the linear system need not be solved to full accuracy, since x; is relatively far from the true
solution x*. Thus only a few inner iterations of the linear solver need to be performed. In later
stages, the inner system will need to be solved more accurately. This is precisely the philosophy of
the inexact (modified) Newton method. A common criterion used to determine how many inner
iterations are needed is as follows. In the kt* iteration, compute a value n€[0, 1) which is an
acceptable bound on the relative residual. Common choices for this are Ng 1= EL—], g 1= ﬁi’ and
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ny := minf{||G(xx)|l, ;33}- For these problems the second of the above choices proved on average to
give the best results. The update sz was then determined by:

|G(xk) + G'(xk)skl|

< (6)
|G (i)l
Expression (6) may be interpreted intuitively as indicating that one should iterate until the inner
residual becomes “small” enough, then do an update.
Linear System Solvers
Several classical iterative schemes were used to solve the inner sparse linear system for q1,.--,¢5 at

each nodal point. Each method had certain advantages and disadvantages when used as a solver on
the Wavetracer. The following schemes were evaluated :

Multi-color SOR

Nested (multilevel) multi-color SOR
Preconditioned conjugate gradient
Multigrid (V-cycle)

Nested (multilevel) multigrid

G o

All were implemented as both point-iterative and as block-iterative methods by blocking the
q1,- - -, gs at each nodal point. In the point iterative methods one solves for each g; sequentially,
using the best available values for the g;,j £ i. The block method involves solving a & X 5 dense
linear system at each node.

A multi-coloring scheme was used for the SOR iterations [17] in order to introduce parallelism into
the method. One should recall that, with red-black ordering, the Gauss-Seidel method decomposes
into two Jacobi steps on the half size systems resulting from the coloring. Unlike the original
Gauss-Seidel method, the Jacobi method is highly parallelizable. The multi-colored SOR produces
similar benefits. In the case of the reduced model with the five point stencil only two colors were
needed. Results for this case are given in [7]. In the full model, three colors are required for the
seven point stencil and four colors for the nine point stencil. The parameter w for the SOR method
was chosen as the optimal parameter for the simple Laplacian model since the matrix in our linear
system has a similar structure to the Laplacian matrix. Numerical experimentation showed that
this was a good choice for our reduced model and gave good convergence results.

Preconditioned conjugate gradient [17] using several pre-conditioners was tried and the performance
of all were essentially similar. The results are presented here for symmetric multi-colored SSOR
[17], which is simple to implement and easily parallelizable.

Multigrid methods [2, 14, 16] were also implemented for these problems. The multigrid
implementation discussed here uses a single V-cycle in the inner iteration for each Newton outer
iteration. The Gauss-Seidel iteration is used as the relaxation method on the fine and intermediate
coarse grids. The Gauss-Seidel method was chosen over the SOR method for the fine and

198



intermediate grids because of its better smoothing property; that is, it eliminates the high frequency
components quicker in the early iterations than the SOR iteration. This is important because a few
iterations are performed on these grids per cycle of the multigrid algorithm. The relaxation
parameters v, and v, were usually taken to be equal to 3. Multicolored SOR iteration was used to
solve the problem on the coarsest grid which was usually taken to be of size n = 4. The problem
was solved to the level of the truncation error with usually just a few iterations. The numerical
simulations were mostly done on the two-dimensional problem of size n = 64, meaning 65 grid
points in both the z and y directions. Some smaller and larger problems were also examined, but
with the minimal configuration of the Wavetracer, the DTC-4, available at the time, the n = 64 size
problem was the largest that could be simulated for the full liquid crystal problem using the
multigrid method.

The implementation of the multigrid algorithm on the Wavetracer assigns a processor (virtual or
physical) to each grid point on the finest mesh, including the boundary grid points. The model
simulations all assume Dirichlet (strong anchoring) boundary conditions, so the boundary
processors are used mainly to store the boundary data. The Wavetracer uses a multi-array data
structure to hold the values for each grid level. Because of the restriction in the MultiC language
that each multi-variable in the executing program must be of the same size, this implementation
was deemed to be the most efficient and easiest to implement. One problem with this
implementation is that many processors are idle when solving on the coarser grids. The multigrid is
thus not a fully parallelizable method using this implementation because not all processors are
being utilized. Alternative variations have been proposed to overcome this problem. Data transfers
between grids are fast since they are handled within processor memory and no communications
between processors is required. Communications are required when computing the weighted
averages for the restriction operation, but the actual transfer of data to the coarser grid is all done
within processor memory. Another drawback to this implementation of the multigrid method is
evident when one solves the n = 64 size problem in two-dimensions. The physical two-dimensional
processor grid on the Wawetracer contains 64 processors in each dimension for a total of 4096
processors. The n = 64 multigrid problem requires 65 mesh points in each of the x and y directions.
This causes the Wavetracer to operate in wirtual memory mode. Since each physical processor must
contain the same amount of virtual processors, many virtual processors will remain idle during the
iterations, resulting in a great loss in efficiency. In addition, since the available memory associated
with each physical processor is divided into two halves, one for each of the virtual processors, the
maximum problem size, which can be solved, is diminished. Naturally, the solution would be to
define a slightly smaller problem of n = 63 that would not have this difficulty. The problem then
becomes one of how to define the series of coarser grids. In our original definition of the coarse grids
we let each grid size be a power of two. This greatly simplifies the construction of the grids and
provides the necessary symmetry to allow us to assign processors to the different grid levels in the
manner described. Data transfer between grids is also extremely simple, since it is all handled
within processor memory. Defining the coarse grids in any other way would greatly complicate the
programming process and would require many more computations and inter-processor
communications.

Another solution to this problem would be to use the boundary processors to not only store the
boundary data but also to take part in the iteration process. This means that now each boundary
processor would really represent two grid points in the mesh instead of only one. This would solve
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the virtual processing problem because one would actually need only 63 physical processors in each
direction for the n = 64 problem. However, another problem presents itself because of the SIAMD
nature of the Wavetracer. In a SIMD environment each processor must perform exactly the same
operation as all the other processors, except on a different set of data. The boundary processors as
defined above would have to be treated separately from the interior processors because in the
communications stage of the algorithm they are not performing the same operation. An interior
processor must communicate with its four nearest-neighbors in a five-point stencil scheme, whereas
a boundary processor would only have to communicate with a subset of its neighbors since the
boundary data that it needs to do its update is stored in its own memory. In the two-dimensional
mesh the processors on each of the four edges of the grid must be treated separately as must the
four corner processors. In a naive implementation these sets of processors would be handled
sequentially in the iteration process, greatly slowing down the computations. In fact, if the obvious
choice is made, this could increase the update time nine times, which is considerably more than the
increase incurred by virtual processing. Unfortunately this problem is not so easily avoided when
one considers general boundary conditions rather than Dirichlet conditrons.

Another alternative approach is to use a Black Box multigrid method similar to that in Dendy [4, 5].
This eliminates the restriction that the number of unknowns in the finest grid should be 2* + 1; for
some k. In addition, by storing the interpolation operators explicitly, it allows the incorporation of
the boundary conditions, for example, by using extrapolation at the points closest to the boundaries.
Thus the boundary conditions are incorporated algebraically rather than by using the difference
equations directly. This does involve extra storage and in the SIMD case loss of parallelism due to
grid point dependent code. However judicious coding, involving initialized multipliers, can reduce
the latter effect at the expense of some further storage. There is reason to believe that, for most
problems of this type and most geometries, the increased storage will be less than 100% and thus
that a code of this type will consume less storage overhead than one involving virtual processing.

The philosophy behind the nested or multilevel schemes [1, 13] is as follows. The problem is solved
on a coarse grid to a certain precision. The results are then interpolated to a finer grid and used as
initial starting values for the solution process there. A sequence of successively finer grids is used,
the finest is the one on which the result is required. It is hoped that providing good initial guesses
will reduce the amount of work needed to obtain the desired accuracy on the finer grids. This effect
is observed in the numerical simulations. The multilevel methods suffer the same kinds of problems
that the multigrid iterations suffered when implemented on the Waveiracer. The different levels are
implemented using a multi-variable array (in the MultiC language) with the physical (or virtual)
processors assigned to the grid points on the finest grid level. This means that when one iterates on
the coarsest level, many virtual processors will be idle. The interpolation of results between grids is
fast because it is all done within the processor and no inter-processor communications are necessary.
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NUMERICAL RESULTS

Laplacian and Scalar Liquid Crystal Problem

Laplacian in Two Dimensions
The model Laplacian problem in two-dimensions is given by:
— Ugz — Uyy = f(2, ), u=g(z,y) on the boundary of Q. (7)

Dirichlet boundary conditions are assumed and 2 is taken to be the unit s quare. The performances
of the various iterative methods previously discussed are compared for problems of size n = 63 for
the one-level schemes and n = 64 for the methods using more than one level. For these simulations
we also assume a known true solution given by

u = z¥y? (8)

which makes the right-hand side of equation (7)

flz,y) = 2.0 (z* +¢°). (9)

With this known solution one can compute the error as well as the residual after each iteration in
order to observe the convergence. The boundary values are set to the known true solution and an
initial guess of u = 0.0 is used at all interior grid points to start the iterations. At each iteration the
maximum absolute error and residual (infinity norms) calculated over all interior grid points are
monitored.

The Wavetracer DTC does not itself contain a micro-second timer. Consequently, all timings must

be performed on the Sun 3/50 front end. The columns real, user and syst give the real (wall clock)

time, the time spent in systems tasks related to the program, including input/output, and the time
spent in executing user code on the front end. The input/output time includes time spent accessing
the SCSI bus and thus time spent sending instructions from the front end processor to the sequencer
of the Wavetracer. User time includes time spent executing the sequential parts of the program. The
majority of the remaining real time is time elapsed while the DTC is executing parallel instructions.

The results of these simulations are given in Table 1. Given the initial guess u = 0.0, the maximum
initial error is 1.0 and the maximum initial residuals are approximately 7934 and 7684 for the

n = 64 and n = 63 size problems, respectively. The iterations are continued until the maximum
absolute error is reduced by about a factor of 10°. A red-black scheme is implemented for all the
iterations (except Jacobi) to induce parallelism into the methods. The red-black coloring scheme is
appropriate since the model Laplacian problem uses a 5-point stencil for processor communications.
The iterations are done on the Wawetracer using a 64 x 64 physical two-dimensional grid of
Processors.
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Table 1. Timings for the Model Laplacian Problem on the Wavetracer DTC

real | user | syst | max. residual | max. error | iterations
Jacobi (n=64) 150.8 | 9.9 | 67.0 | 1.5(-3) 3.5(-5) 6901
Jacobi (n=63) 132.6 | 13.5 | 784 | 2.1(-3) 3.5(-5) 6689
Gauss-Seidel (n=64) | 89.1 | 7.5 |40.5 | 1.5(-3) 3.5(-5) 3451
Gauss-Seidel (n=63) | 67.3 | 8.2 | 39.3 | 1.5(-3) 3.5(-5) 3345
SOR (n=64) 3.2 04 |15 |6.2(-2) 3.4(-5) 113
SOR (n=63) 3.2 0.4 |20 |58(-2) 3.5(-5) 111
Pre-cg (n=64) 6.1 05 |10 |72(-2) 2.5(-5) 32
Pre-cg (n=63) 2.7 0.5 | 1.0 |6.8(-2) 3.1(-5) 31
Multigrid (n=64) 2.5 0.3 |05 |34(-2) 3.5(-5) 3 V-cycles

As expected, the Jacobi iteration is the slowest to converge. Even though it is completely
parallelizable on the Wauvetracer, its slow rate of convergence does not make it competitive. The
Gauss-Seidel method converges in about half as many iterations as the Jacobi method. This is
expected for the model Laplacian problem. Since the Gauss-Seidel iterations are implemented in a
red-black ordering, each iteration takes slightly longer than a Jacobi iteration. For both the Jacobi
and Gauss-Seidel iterations the real running times for the n = 63 size problem are faster than those
for the n = 64 problem. This is because the n = 64 problem uses virtual processors whereas the

n = 63 problem fits the physical grid of processors precisely.

The SOR method greatly improved the convergence of the problem. It needed only 113 iterations to
get to the same level of error as the previous two iterative methods (for the n = 64 problem). The
real times, user, and systems have also been significantly reduced. This agrees with the theoretical
results for the behaviour of these three iterative methods on the model problem.

The preconditioned conjugate gradient iteration was implemented using a red-black coloring scheme
and Symmetric SOR as the preconditioner. The method is competitive with the SOR iteration for
the n = 63 problem. It is, however, slower than SOR for the slightly larger problem.

To make a fair comparison, one must compare the multigrid algorithm with the n = 64 size
problems of the other four iterative methods, since multigrid was implemented using a finest grid of
this size. As one can see from the table, multigrid converges significantly faster than Jacobi,
Gauss-Seidel and preconditioned conjugate gradient, and slightly faster than SOR (in real time). It
even beats the other four methods when they are run on the smaller problem. This shows that
multigrid is a very competitive method even with its limitations as discussed previously. Only three
V-cycles are needed to reduce the error to the desired level. Five levels were used (n = 4 at the
coarsest level) with vy = 1, = 3.

Scalar Liquid Crystal Problem

The scalar analog to the full liquid crystal problem is of interest because it has a similar structure
to the full model. Various algorithms for solving the full model are first developed for the scalar
problem. The relative performances of these algorithms were basically the same for both models.
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The free-energy density for the scalar-field analogue to the full systems model is given by:

1 1 1 1
f(Q)=§L1IV<JI2 + §Aq2 - §Bq3 + ZCq“ ~ HYg (10)

where L, is an elastic constant, A,B,C are bulk constants and H is a field term representing an
outside field such as a magnetic field. To minimize the free-energy of the system one needs to solve
the Fuler-Lagrange equation

—LiV% + Aq — B¢* + C¢® = H2. (11)

Equation (11) is non-linear in the scalar variable g. The resulting linear system that needs to be
solved at each Newton step is very similar in structure to the Laplacian problem. The only
difference is the additional terms on the diagonal elements of the A matrix that is a result of the
non-linearity of the scalar problem. The discretization of the scalar Euler-Lagrange equation
produces a 5-point stencil at each mesh point. The communications pattern is thus the same as it
was for the Laplacian problem. A red-black coloring scheme is sufficient to induce parallelism into
the iterative solvers used.

For the problem used in these tests L; = 1.0, A= B=C = 1.0, H = 0.0, with Dirichlet boundary
conditions given by :

g=1on z=landy=1, g=z ony=0,g=y onz=0.

The true solution to this problem is not known, therefore the error cannot be computed. The
maximum absolute residual at each iteration is used to monitor the convergence. The initial guess is
given by q=0.0 at each interior mesh point and iteration proceeds until the maximum absolute
residual is reduced by approximately factor of 10%. The initial residuals for the n = 64 and n = 63
size problems are 8192 and 7938, respectively. Table 2 gives the results of the simulations.

Table 2. Timings for the Scalar Liquid Crystal Problem on the Wavetracer DTC

real | user | syst | max. residual | max. error [ outer iter.

SOR (n=64) 6.2 103 |14 |2.7(-3) — 9

SOR (n=63) 3.3 103 |14 |24(-3) — 9

Pre-cg (n=64) 1201 0.8 | 1.2 |2.5(-3) — 8

Pre-cg (n=63) 52 (08 |09 |21(-3) — 8

Multigrid (n=64) 40 [05 |0.6 [23(-3) = 4

Nested SOR (n=64) 6.8 105 | 1.7 |5.9(-3) — 19(4,3,4,4,4)
Nested Multigrid (n=64) | 4.0 [0.4 [0.7 |5.9(-3) — 8(4,1,1,1,1)

Comparing the real execution times of these algorithms shows again that the preconditioned
conjugate gradient method is not competitive on this kind of architecture. The nested (multilevel)
methods use five levels with the coarsest level being of size n = 4. The numbers in parentheses in
the last column of the table are the number of outer Newton iterations needed to achieve
convergence at each level.
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We refer to a nonlinear Newton based analogue of the Full Multigrid (FMG) method as nested
(multilevel) multigrid. It employs Newton iteration on each mesh level until the desired accuracy is
attained. In the case of the example considered here, this required 4 outer iterations on the coarsest
mesh and one each of the finer mesh levels. With the exception of the coarsest level, a V-cycle with
v, = v, = 3 is applied at each level to solve the linear system arising from the Newton process. It is
considerably faster than nested SOR in achieving the same reduction in the residual. Thus with the
exception of the initial 4 Newton cycles, it is a natural nonlinear analogue of the Full Multigrid
method (FMG) [16, p.22]. Multigrid (non-nested) seems to perform the best since its timings are
essentially the same as nested multigrid but it has greater residual reduction. The SOR (n = 63)
iteration has the fastest real time but on a smaller problem where no virtual processing is involved.

Note that the optimal w from the Laplacian model was used in the SOR iterations for the scalar
problem. The experimental results showed that this was a good choice and gave the best
convergence over any other choice. The stopping criteria used to terminate the inner iterations for
each Newton step was nx = 1/(k + 2).

Full Liquid Crystal Problem

Table 3 gives the results of the numerical simulations for the full systems model. The same test
problem was used as in the case of the reduced model together with the appropriate Dirichlet
boundary conditions. Only the size n = 64 problem was considered for this set of runs. The
following set of parameter values was used: Ly = 100, Ly =L;=10,A=B=C=D=

M = M’ = 1.0 and outside field parameters are set to zero. Results from both the 7-point and
9-point discretizations are given. Both point and block iterative methods were compared. The initial
maximum absolute residuals for the 7-point and 9-point schemes are 8.2(4) and 8.95(4), respectively.
The iterations were continued until the maximum residual was reduced by approximately a factor of
105, The initial maximum error is 1.0 since initial guesses of ¢; = 0.0, i=1,---, 5 were used for the
interior mesh points. The simulations were all done in single precision.

The SOR methods used 10 inner iterations for each Newton outer iteration. The stopping criteria
used for the reduced model (ny = 1/(k + 2)) was too restrictive in some cases and caused
convergence problems. Using 10 inner iterations avoided these problem areas. As before, the
multigrid methods outperformed their SOR counterparts. The 7-point iterative scheme (point
method) was competitive with the 9-point scheme for both multigrid and nested (multilevel)
multigrid. This was not the case for the SOR methods. The 9-point scheme performed better for
the one-level SOR case but did worse for the multilevel iteration. Block methods were not
competitive for either multigrid or nested multigrid. The block method performed best for the
single-level SOR iterations, and was also competitive in the nested case. The best algorithm for
solving the test problem was again nested (multilevel) multigrid using the point iterative approach.
The 9-point scheme performed marginally better than the 7-point, producing a slightly smaller
residual, upon convergence, in about the same amount of real time. The pre-conditioned conjugate
gradient methods were not jmplemented for the full model since they showed to be not competitive
in the reduced model case [7].
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Table 3. Timings for the Full Systems Liquid Crystal Problem on the Wavetracer DTC

real | user | syst | max. residual | max. error | outer iter.
SOR (7p) 277.018.2 | 15.6 | 8.17(-2) 1.70(-5) 42(10 inner/out)
SOR (9p) 148.7 | 7.6 | 12.9 | 9.10(-2) 2.39(-5) 34(10 inner/out)
Block-SOR (9p) 106.3 | 6.4 | 6.5 | 7.95(-2) 1.27(-5) 17(10 inner/out)
Multigrid (7p) 472 |20 |16 |655(-2) 5.36(-5) | 4(1 V-cyc/out)
Multigrid (9p) 422 |22 {19 |340(-2) 4.72(-5) 4(1 V-cyc/out)
Block-Multigrid (9p) 609 |4.1 |1.6 |2.99(-2) 4.15(-5) 4(1 V-cyc/out)
Nested SOR (7p) 859 |36 |75 |8.26(2) 1.36(-5) | 18(3,1,2,4,8)
Nested SOR (9p) 1005 | 6.2 | 9.7 |6.14(-2) 1.98(-5) | 25(3,1,2,5,14)
Block-Nested SOR. (9p) 1050 |74 | 7.6 |8.23(-2) 1.05(-5) 18(3,1,2,4,8)
Nested Multigrid (7p) 374 |24 |28 |8.44(-2) 6.88(-6) | 8(4,1,1,1,1)
Nested Multigrid (9p) 36.3 |28 |28 |4.62(-2) 3.86(-6) | 8(4,1,1,1,1)
Block-Nested Multigrid (9p) | 50.5 | 3.8 |2.7 | 4.62(-2) 3.89(-6) 8(4,1,1,1,1)

CONCLUDING REMARKS

Multigrid methods work well as inner solvers for liquid crystal problems when implemented on
SIMD computers with 2-D grid architectures. Multi-colored SOR methods are also effective, but
due to the cost of inner products on such machines pre-conditioned conjugate gradient methods are
not. The multigrid algorithms (one-level and multilevel) perform better than their SOR
counterparts for the larger n = 64 problem.

Although the Wavetracer’s mesh architecture fits the problem (discretization) well thereby making
communications between nearest neighbors efficient, it is not as well suited for multigrid algorithms.
This is due to the fact that the machine has a physical 2-D grid structure with 64 processors in each
dimension. For multigrid and multilevel iterative schemes a grid size of 65 x 65 is required for an
efficient implementation, because of the way the grid refinements are defined. So for an n = 64 size
problem, the machine must to go into virtual processing mode, thus slowing down the execution
time of the algorithm and increasing the storage overhead. One solution would be to generate grids
that would not suffer this problem, but this involves considerably more complex coding, which
would also increase execution time and storage overhead but not to the same extent as virtual
processing. We emphasize that the multigrid implementation employed here is effectively the
sequential version of the multigrid method. Thus on the coarsest mesh only 0.4% of the processors
were active. Despite this disadvantage multigrid proved the fastest of the algorithms tested. We
remark that although these methods worked well for the test problems, where the iteration matrix
was positive definite symmetric, convergence problems can be expected, when the system becomes
indefinite, due to the coarseness of the coarsest mesh. Use of a coarsest mesh with more points can
be expected to remove this problem as well as improving the performance due to higher processor
utilization. Further improvements in performance can be anticipated if parallelism were introduced
using the method of [4, 5, 8, 9, 15].
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SUMMARY

This paper describes a simple numerical model for hurricane track prediction which uses a
multigrid method to adapt the model resolution as the vortex moves. The model is based on
the modified barotropic vorticity equation, discretized in space by conservative finite differences
and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem
for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing
uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary
numerical results indicate that the local mesh refinement allows accurate prediction of the
hurricane track with substantially less computer time than required on a single uniform grid.

INTRODUCTION

Accurately predicting the track of a moving hurricane is a problem of great practical
importance. One approach is to treat the problem as one in computational fluid dynamics, taking
observed meteorological data as initial values for a numerical model. Many factors influence
the accuracy of this approach, including the initial data (or lack thereof), the dynamical and
physical processes included in the model, and the numerical scheme employed. While the relative
importance of these three factors is a subject of considerable debate, in this paper we focus on the
third.

Our premise is that predicting the track of a moving hurricane accurately requires resolving
the flow field adequately on both the large scale surrounding the vortex and the small scale within
the vortex itself. Since the spatial scales involved may differ by more than an order of magnitude,
models using uniform resolution are inherently less efficient than what should be possible. Here,
we use a simple dynamical model which has been used successfully by many authors (ref. 1, 2, 3),
namely, the modified barotropic vorticity equation. However, rather than use a single uniform
grid as in those studies, we investigate the use of adaptive multigrid techniques, with the goal
of obtaining high accuracy at low computational cost. In the following sections we detail the
formulation of the model, describe the mesh refinement scheme, and present some preliminary
numerical results.

*Work supported by the National Science Foundation under Grant No. ATM-9118966
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MODEL FORMULATION

Governing Equations

We formulate the model on a section of the sphere using a Mercator projection (true at latitude
¢ = ¢.). The model consists of the modified barotropic vorticity equation

% o mI,C) + Bm

oY a2
" - =vmV, (1)

Oz
where the relative vorticity ¢ and streamfunction v are related by
(m2V2 - 73) Y= (. (2)

Here V° = 8°/0z" + 0°/8y?, J (¥, () is the Jacobian of (¢, ) with respect to (z,y), 8 = 262 cos o/a
(with a and Q the radius and rotation rate of the earth), and m = cos¢,./cos ¢ is the map

factor. There are two quasi-physical parameters: the diffusion coefficient v, and the parameter y
(inverse of the effective Rossby radius) which helps prevent retrogression of ultralong Rossby waves
(ref. 4). We also consider versions on the f-plane (m = land 8 = 0) and B-plane (m = 1

and 8 = 2 cos ¢. /a). The model domain is a rectangle in z and y centered at (z,y) = (0,0),
where (A, ¢) = (A, ¢.). At the boundaries we specify the streamfunction % (and thus the normal
component of the velocity); where there is inflow, we also specify the vorticity (.

Space Discretization

On a single uniform rectangular grid Q" consisting of gridpoints (z;,y;) with mesh spacing h in
z and y, we discretize (1) and (2) in space by finite differences as

d . 2. 2h v
tcitj +m; T+ ﬁ/m_,@?' Y., =vm, Vi G )

and
(m2V2, =7 i, = G (4)

respectively. Here 7; (4, ) is the discrete Jacobian of Arakawa (ref. 5), and 8", , and

4 %, are the O(h”) centered difference approximations to 81 /8x and the Laplacian operator,
respectively. We apply (3) and (4) at the interior points. At boundary points where there is inflow,
¢ is specified; otherwise, we predict ¢ on the boundaries by applying an equation of the form (3)
but using appropriate one-sided differences. It should be noted that using the Arakawa Jacobian

is crucial here: the fact that it conserves discrete analogues of vorticity, enstrophy (mean square
vorticity), and kinetic energy implies that the model is not subject to nonlinear computational
instability.

208



To write the space-discretized cquations in a more compact form, we collect the values 9, , and
¢, , into grid functions y" and ¢, respectively, defined on the grid Q". We can then write (3) and
(4) as

Ch F’I(’d)h Cb) (5)
dt

and
GIJ ('l,bh) — Ch') ’ (6)

where the operators F and G" express the space discretization described above.

Time Discretization

To discretize (5) and (6) in time we use the classical fourth-order Runge-Kutta (RK4) scheme.
To describe it, we specify a time step At > 0 and introduce time levels t;, = kAtfork =0, ... .
Suppressing the superscript h for simplicity, we now use the superscript & to denote values at time
level k, e.g., ¥ ~ " (t;). With this notation, the RK4 scheme can be written as

Chra — ¢ K bk ~ ot K+
TZF _F(¢1C)1 G(w z)_C 11
CH—-% _ Clv _ 1 . L - ) ;
TTar = P, EE), Gt = (e, (7)
CI\—H Cl - -

S = P PG, G =T
CHI ¢ i k1 kit ]

il Gwh") = ¢,

where
Fiti = é (F“ 4 ofhts y oFtts F"“) : (8)

Thus, to execute a single time step t, — #; 1, we perform the four stages indicated in (7); each of
these stages consists of computing F based on known values of i and (, predicting a new vorticity
¢, and solving the diagnostic equation for the corresponding streamfunction .

Although it requires four times as much work (per time step) as the second-order Adams-
Bashforth scheme commonly used in such models, this RK4 scheme has several advantages. First,
it allows time steps at least four times as large, so in fact it is more efficient. Second, it is more
accurate, so time discretization errors are less likely to distort the conservation properties of the
Arakawa Jacobian. Finally, since it is a one-step scheme, it has no computational modes and needs
no other method for the initial time step.
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Multigrid Solution

To solve the diagnostic equation at each stage for the streamfunction ¢, we use a multigrid
method. For the relaxation scheme we use a point Gauss-Seidel method formulated as follows. The
discrete (interior) equation (4) can be written as

1 Cij
(LY)ij =37 (0,90~ 8.)) = _ﬁ;’ =F (9)
where
Siy=icr F i F i F i (10)

is the sum of the neighboring values of 1 and

(1)

is the diagonal term of the discrete Helmholtz operator. Given an approximate solution 1 of (9),
we relax at a point (7, j) by changing the value there to satisfy the corresponding equation (9); this

results in the new value

bij = (12)

0',1
where S’l—,‘, is defined using the current surrounding values in (10). The corresponding residual (if
needed) is given by

Ty= By = % (U.I{bh.i - S’,,',) = % (17)1‘.1 - ;pi-./) ‘ (13)

We use this relaxation (with red-black ordering) as a smoother in a multigrid method, using half-
injection for the fine-to-coarse transfer of residuals and bilinear interpolation for the coarse-to-fine
transfer of corrections. For the control algorithm we use repeated V(1,1)-cycles.

LOCAL MESH REFINEMENT

Given the premise that the flow near the center of the vortex requires much higher resolution
than the flow surrounding the vortex, we now consider how to provide such variable resolution.
Our basic method is essentially that of (ref. 6), constructing nonuniform resolution by
superimposing uniform grids of varying spatial extent. Since all calculations are carried out on the
uniform grids, programming remains relatively easy.

To illustrate the method, let us consider first the case of two grids: a coarse grid 2" covering
the whole domain (2, and a ﬁne grid Q" which covers only a portion of the domain (i.e., enclosing

the vortex). 'Wefassume that the boundaries of the fine grid coincide with coarse grid lmes The .
model variables ¢ and ¢ are carried on both the coarse and fine grids (denoted by ¢*", %*" and ¢",- h

", respectively). Noting that the coarse grid allows time steps twice as large as those on the ﬁne
grid, we use the followmg basm procedure for stepping the model from time t;, to t; +1 '

210



1. Execute one time step of length At on the coarse grid to produce ¢! -"4=1.

foh+1

2. Execute two time steps of length At/2 on the fine grid to produce ¢ Pl

using boundary values for 3 interpolated from the coarse grid (in space and time);
3. Copy the fine-grid solution to the coarse grid at points common to both.

Several points deserve mention here. First, in solving the implicit problem for 1 on either grid,
we use the multigrid method outlined above. This introduces additional coarse grids, e.g., a grid
with mesh spacing 2k covering only the region of the local fine grid Q". In fact, the “underlying”
part of the coarse grid 22" could be used for this; however, the resulting complications of
preserving interface values (for fine-grid boundary values) and restricting relaxation to only part
of °" seem too high a price to pay for the relatively small savings in storage which would be
achieved. Second, after completing the above three steps, the resulting solution on the composite
grid O = Q" U Q°* could be further refined by applying a composite-grid discretization of the
governing equations; this FAC (Fast Adaptive Composite grid) method and several variants are
described in (ref. 7), and will be explored in future work. Finally, the above approach generalizes
immediately to more than two grids.

For the initial work reported here, we have made the following simplifying assumptions. First,
we require the grids to be rectangular and strictly nested (i.e., any fine grid is contained wholly
within the interior of the next coarser grid), with one grid per level (i.e., the refinement occurs in
one region only, surrounding the vortex). Second, we use a constant mesh ratio of two (i.e., the
mesh spacing h on any grid is twice that of the next finer grid, if any). Finally, we will specify
the number of grids and their sizes in advance but allow them to move following the vortex as the
solution is computed.

Since the problem to be solved has an easily identifiable region of interest surrounding the
vortex, we take the following simple approach to moving the grids. First, we locate the vortex
center on the finest grid. Then for each grid in turn, from the next-to-coarsest to the finest, we
decide whether or not to move the grid. This decision is based on the distance of the vortex
center from the center of the grid: if it is more than a specified fraction a of the distance L to the
boundary, we move the grid. The move is calculated so as to “overshoot” a bit, i.e., aiming to put
the vortex center beyond the (new) grid center by a specified fraction é of the distance to the grid
boundary. Note that care must be taken at this stage to ensure the strict nesting of grids assumed
above. Finally, the grid is moved by shifting the values which remain on the grid and filling in
the rest by interpolation from the next coarser grid. For the results presented here, we check for
possible grid moves after each time step on the coarsest grid, and use the parameters @ = 0.4 and
§=0.2.

To locate the vortex center (needed both for moving the grids as described above and for
determining the vortex track), we first locate the point of maximum vorticity on the finest grid. We
then interpolate the vorticity at that point and its nearest neighbors in z and y (five points total)
by a quadratic function, and define the vortex center to be the location of the maximum of that
quadratic.
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RESULTS

The initial conditions for the test problem consist of an axisymmetric vortex superimposed on
an environmental flow, as considered in (ref. 1). The environmental flow is given by

a0) = (P25 eos (229)
B = (%) cos (L), (14)
which corresponds to the zonal current
dy . (27
ﬁ(y) — —a% = ﬁ(; S1n (—L—y> . (15)
The tangential wind in the initial vortex is given by
_ b
vir) =2V () expl—a(r/rn)] (16)
m 1+ (T/Tm)'

where r = [(z — zu)? + (v — y0)?]'/? is the radial distance from the vortex center (zy,30). Note that
V has the approximate maximum value V,, near r = r,, (exact when a = 0); the exponential factor
is included to make V vanish quickly for large r. The vorticity corresponding to (16) is

=2 _Y [-—2——— _ab (i)h} . (17)

'rar - 7 1 + (’r/'rm)2 T

We will use the following parameter values: %, = 10 ms~! and L = 4000 km for the environmental
flow,and V;, = 30ms™!,r, = 80km,a = 10-% and b = 6 for the initial vortex. The
computational domain is a square of side length 4000 km on a B-plane, using 3 for the latitude

20° N; the vortex is initially centered at zp = 750km and yu = —750km. The model was run from
t = 0 to t = 72 hr; for simplicity we have set v = 0 and -y = 0 here.

To establish a standard for comparison, we ran the model with high resolution (384 x 384 grid
with spacing h = 10.42km and time step 10s). We then ran the model with a variety of grid
configurations (using up to four grids) and compared the vortex track to that of the reference run.
Table I summarizes these results, with the runs listed in order of increasing execution time (on a
SUN SPARCstation2). All of the cases in this table use only square grids, with N, = N, = N. The
forecast error is defined as the distance between the predicted vortex location at a given time and
that in the reference run. These results show that the local refinement process has the potential to
substantially reduce the execution time required to achieve a given accuracy. For example, a single
grid with b = 31.25km (run 6) achieves errors on the order of 10-20 km; with local refinement
(run 2) comparable accuracy is obtained with only about 36% as much computer time. Similarly, a
single grid with h = 20.83km (run 8) achieves errors on the order of 1-5km; with local refinement
(run 7) comparable accuracy is obtained with only about 42% as much computer time. In fact,
run 7 with local refinement achieved about the same accuracy as did the single-grid run with b =
15.625km (run 9) but with only about 18% of the computer time. In addition, the solution fields
produced with local refinement (run 7) are smooth, as shown in Figures 1-5, with no indication of
any problem due to the change of resolution at the grid interfaces.
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CONCLUDING REMARKS

The preliminary results reported here show that adaptive multigrid techniques can substantially
reduce the computer time required to make accurate hurricane track forecasts. In addition to
ongoing testing of the existing model, we plan to investigate the following possible improvements.
First, we plan to include the FAC method as discussed above. This should have the advantage of
more precise conservation of vorticity, enstrophy, and kinetic energy at the grid interfaces. Second,
we plan to construct a fully adaptive version of the model by using the Full Approximation Scheme
(FAS) to produce estimates of the local truncation error to be used in an automatic grid refinement
scheme (as proposed in ref. 8). Finally, we plan to test the model using real data, and compare its
performance to that of models currently in operational use.
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Table I. Results of Model Runs

Grid size(s) At Forecast error (km) at: Execution
Run N h (km) (min) 24hr  48hr  T72hr time (sec)

1 64 62.50 60 110 143 47 170

2 64 62.50 60 11 8 17 504
64 31.25 30

3 96 41.67 30 33 12 25 799

4 32 125.0 120 14 24 39 916

32 62.50 60
48 31.25 30
64 15.62 15

) 64 62.50 60 1 6 10 1,174
64 31.25 30
64 15.62 15

6 128 31.25 30 11 8 19 1,409

7 64 62.50 60 1 ) ) 2,047
64 31.25 30
96 15.62 15

8 192 2083 20 1 3 5 4,860
9 256  15.62 15 2 3 4 11,405
10 384  10.42 10 - - - 41,716
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SUMMARY

Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic
equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned
Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation
scheme provides an efficient and relatively simple approach for solving two-dimensional spectral
equations. Numerical examples and comparisons with other methods are given.

INTRODUCTION

For limited-area problems with general (non-periodic) boundary conditions, Chebyshev spectral
methods give exponential convergence for smooth solutions. However, except in some very simple
cases (e.g., one-dimensional constant-coefficient problems), Chebyshev approximations usually lead
to full linear systems which cannot be solved efficiently by direct methods, and iterative methods
must be used. Unfortunately, designing efficient iterative methods for discrete spectral equations
has proven difficult, especially for problems with non-constant coefficients (ref. 1). Perhaps the
most promising technique to date for solving spectral discretizations of elliptic problems is the
spectral multigrid method (ref. 2, 3). However, the best relaxation schemes known today are
complicated to apply. In this paper we introduce two simpler relaxation schemes and investigate
their performance.

As prototype problems we consider one- and two-dimensional elliptic equations with Dirichlet
boundary conditions on simple geometric domains. In one dimension we consider

@)= f(), el <1,
u(+1) =a, u(-1)=b. (1)

The two-dimensional prototype problem is

—Qu(z,y) = f(z,y), |z| |y <1,

u(z,y) = g(z,y), |z]=1,[y|=1. (2)

We discretize these problems by Chebyshev collocation. For example, for the two-dimensional
problem (2), the solution u(z, y) is approximated by a set of discrete values %; 1, on the Chebyshev

*Work supported by the National Science Foundation under Grant No. ATM-91 189686.
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grid {(%;,T%) = (cos(jm/Nz),cos(km/Ny)) |0 <j < Nay 0 <k < N,}, with the requirement that
problem (2) be satisfied on this grid, i.e.,

—(@%) +al%) = f(@;,m),  1<i<Na,0<k<N

. . (3)
ﬁ],k:g(i]a'yk)) ]IO,]ZNz,kZO,k:Ny

where ﬁg-‘:ckm) and ﬁg-
E,}\,’:f__o Zfﬁo fimnTm(2)Tn(y) to u(z,y) on the Chebyshev grid. For simplicity, we will assume here
that N, = N, = N; however, the codes described in this paper do not require this.

y,i") are values of the second-order derivatives of the Chebyshev approximation

The discrete problem (3) can be expressed in form of a linear system

AU=F (4)
Unfortunately, the matrix A, formulated by Chebyshev collocation approximations, is full and
non-symmetric. For two-dimensional problems, direct methods (like Gaussian elimination) would
require O(IN®) operations for factorization and O(N*) for the subsequent solution, which is far too
much work to be practical. Thus, iterative methods must be used.

THE POINTWISE PRECONDITIONED RICHARDSON RELAXATION SCHEME

The most efficient method available today for solving (4) and its generalizations to other
elliptic problems is the spectral multigrid method of Zang et al. (ref. 2, 3), which employs finite-
difference preconditioned Richardson iteration as the relaxation scheme in a multigrid context.
Preconditioned Richardson relaxation for (4) takes the form

V «— V +wH(F — AV), (5)

where V is the current approximation to U, w is a relaxation parameter, and H is the
preconditioner. The criteria for choosing a preconditioner H are:

o H should give fast multigrid convergence,
o H should be easy and cheap to generate or apply.

The finite-difference preconditioning of Zang et al. (ref. 2, 3) gives fast convergence, but applying it
requires solving (or nearly solving) a finite-difference discretization on the nonuniform Chebyshev
grid. This procedure is complicated and expensive. Are there alternatives which are simpler

and still effective? Achi Brandt (personal communication, 1983) has suggested that pointwise
preconditioning based on the (variable) Chebyshev mesh spacing might work well. In this section,
we investigate the performance of this simple preconditioner when applied to the problem (4).
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The One-Dimensional Case

Formulation

As an analogue of the Gauss-Seidel relaxation for a finite-difference method, the pointwise
preconditioning for the Chebyshev discretization takes the form

h2
vj — v; + wérj, (6)

where h; = (Zj—1 — Z;+1)/2 is the effective grid size at the point Z;, r; is the the residual
R = F — AV at 7, and w is a relaxation parameter to be chosen to accelerate the convergence.
Note that (6) is equivalent to choosing the preconditioning matrix H in (5) as a diagonal matrix

h2 hZ
H:diag(1,?1,..., ";—1,1). (7)

Analysis
The evolution of the error E = V — U in the Richardson relaxation (5) is described by
' E «— (I —wHA)E. (8)
Therefore, the convergence factor for (5) on a single grid is
osg = p({ —wHA),

where p denotes the spectral radius. Likewise, the multigrid smoothing factor for (5), when used as
a smoother in a multigrid method (e.g., ref. 4), is

B=p(G(I — wH A4)), (9)
where G represents the perfect coarse-grid correction, i.e., set all low modes of the error to zero.

For the simple preconditioning (7), our numerical computations show that the eigenvalues of the
matrix H A are all positive real numbers. The maximum eigenvalue is Amax ~ 5.0, the middle is
Amid & 1.5, and the minimum is Ami, = O(N~2). The formulas of Zang et. al. (ref. 2, 3) then give a
good approximation to the optimal w and i, namely,

2 Amax — Amid ~

N—— 0325, [ ~ 0.6. 10
“ )\max + /\mid # Amax + Amid ( )

Q

Indeed, computing the smoothing factor directly from (9) using w = 0.325, we find that fi < 0.6 for
all N < 512. '

To take into account the effects of grid transfers (omitted in the smoothing analysis above),
we use the following two-grid analysis. The evolution of the error E in one two-grid V (n1, n2)-
cycle (where ny and ng specify the number of relaxation sweeps before and after the coarse-grid
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correction, respectively) is described by the matrix
T = (I —wHAf)™(I — PA;'RA)I — wHAf)™. (11)

Here, R represents the fine-to-coarse grid transfer (we use injection), P represents the coarse-to-
fine grid transfer (we use Chebyshev interpolation), and Ay and A, represent the discrete operator
matrix in (4) on the fine and coarse grids, respectively. Note that (11) assumes that the coarse-grid
problem is solved exactly.

We computed the two-grid convergence factor org = p(7T) for N < 512 using different
values of w, and the numerical results show that w = 0.325 again gives the optimal convergence
factor (or very close to it). Using that constant value, we find that the smoothing factor per sweep
pts = (o7g)Y/(M+72) satisfies

0.5< us <0.6

for all N < 512. A similar analysis for the one-dimensional Helmholtz problem
Au(e) - u"(@) = £(a) (12)

shows that with various choices of A and boundary conditions (Dirichlet, Neumann and mixed), an
appropriate pointwise preconditioner also yields the smoothing factor per sweep p, < 0.6.

We have developed FORTRAN-77 routines to implement the Chebyshev multigrid method
using the pointwise preconditioner as described above. The code has been used to solve the
problem (12) with various choices of u(z), A, and boundary conditions. The observed convergence
factor per sweep u, is smaller than 0.60 for all cases tested, in agreement with the analysis
presented above.

The Two-Dimensional Case

Formulation

We note that Gauss-Seidel relaxation for the second-order centered finite difference
approximation to (2) can be written as
h2
Ujik € Uik + Tk

where ;. is the finite-difference residual. A natural analogue for the Chebyshev collocation
discretization (3) is

1
Ujk ¢ Ui+ w (———) T ks 13
! ! 2/h% +2/h%) (13)
where h; and hy, are the grid sizes at the point (Z;, Jx), Fjx = fix — {—('U_gxkz) + T)‘Sy,‘y))] is the

residual of Chebyshev discretization, and w is a relaxation parameter to be chosen to accelerate
the convergence. Clearly, the iteration (13) is a special case of the Richardson iteration (5), with
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a diagonal preconditioner H with diagonal entries (H);k jx = (2/ h?f +2/h2)~1. This preconditioner
is easy and fast to apply. Does it gives a fast convergence? Unfortunately, the following analysis
shows that the answer is no.

Analysis

Computational results indicate that the eigenvalues of the matrix H A are all positive real
numbers. Again, good approximations to the optimal w and [i can be obtained by

2 Amax — Aqua (14

W ——, TR
S WL

b
max + }\qua

where Amay is the maximum eigenvalue and Aqua is the quarter eigenvalue (ref. 1). More precise
values of the optimal w and fi, can be obtained by actually computing the spectral radius

p(G(I — wH A)) for different choices of w and comparing the results. For N < 32, the eigenvalues
Amax and Aqua, w and fi computed by (14) and the optimal w and [ are listed in Table 1. Since fi is
large and increases with N, these results suggest that the pointwise preconditioner (13) will not be
a good multigrid smoother.

Table I also lists the two-grid smoothing factors per sweep p; = (p (T))Y/{m+n2) computed from
the matrices in (11) for N < 32 usingw = 0.36. These results again show that the pointwise
preconditioning (13) does not give fast convergence.

We have implemented the pointwise preconditioning (13) in a multigrid solver written in
Fortran 77. Computational results from a number of test cases confirm the above analysis: we
conclude that the pointwise preconditioning does not give fast convergence.

Table 1. Multigrid Analysis of Two-Dimensional Pointwise Preconditioning

Eigenvalues of HA By (14) By computation

N Amax }\qua w 7 Wopt 7 Hs
4 3.00 1.83 0.41 0.24 0.35 0.28 0.51
8 4.10 1.26 0.37 0.53 0.35 0.52 0.68

16 4.57 095 0.36 0.66 0.36 0.75 0.80

32 4.76 0.78 0.36 0.72 0.36 0.82 0.88
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THE LINE RELAXATION METHOD

The poor performance of pointwise preconditioning in two dimensions can be understood in
terms of the anisotropy introduced by the nonuniform Chebyshev collocation grid. Since the mesh
spacing varies with £ and y, at any given point (z,y) the coupling in the discrete operator in (3)
may be stronger in z or in y. In finite-difference multigrid methods, point relaxation performs
poorly in such anisotropic cases, and the cure is to use alternating direction line reIathlon Thus,
it is reasonable to try an analogous approach for the Chebyshev discretization.

Formulation

To formulate the line relaxation method, we express the discrete problem'(B) in the matrix form

(H+V)U =F, | (15)

where H and V correspond to the horizontal part (—0%/0z?) and vertical part (—0%/3y?) of the
Laplacian operator respectlvely Startmg from an approxunatlon yeld ¢ the solutlon U one sweep

1. Sweep a.long the m-dlrectlon. On each grid lme pa.rallel to z-axis, use the values of V°ld except
those on the current line, and solve for values on the current line by solving (15). This can be
expressed in the matrix form as :

(H+Vy)v=id = p_y yold (16)

where V; and V, denote the diagonal and off-diagonal parts of the matrix V, respectively. Note
that the entries of V; are known (ref. 1) and V; is a constant on each grid line parallel to the z-
axis. Thus, the system (16) can be decoupled into (N — 1) one-dimensional discrete problems,
each of which is a Chebyshev collocation approximation to a Helmholtz equation on an interior
grid line parallel to z-axis; the z-directional sweep consists of solving these equations.

2. Sweep along the y-direction. The y-direction sweep is basically the same as the z-direction
sweep except that we now work on grid lines that are parallel to y-axis and use values of Vmid
instead of V°!4. The equation we need to solve is

(Hq+ V)V2e™ = F — g, ymid (17)

where H4 and H,, are tﬁejai;gdhalwand off-diagonal parts of . Asin the a:-rdirectionr s§veep, the
two-dimensional problem (17) is solved by solving (N — 1) one-dimensional Helmholtz equations.

It turns out that as it stands, the line relaxation (16)—( 172 is not a good multigrid smoother;
however, this can be fixed as follows Let C™id = ymid _ y/old 34 gmew — ymew _ ymid dopgte the

corrections for Vo4 and V™4 and ROM = F — AV°od and Rmid — F — AV™id denote the residuals
of V°ld and Vmid respectively. Rewriting equations (16) and (17) as correction equations and
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introducing a relaxation parameter w (to be determined by analysis to accelerate the convergence),

we obtain ' |
(’H + Vd)cmld — OJROM, (er + V)Cnew — meld (18)

We refer to (18) as the collocation version of the line relaxation method.

It is not practical to implement the collocation version because there are no fast solvers available
for the collocation approximations, even for one-dimensional problems. However, in the multigrid
context, a relaxation scheme functions as a smoother rather than a solver: instead of solving
each problem exactly, we only need to smooth out the error, i.e., reduce high modes in the error.
Therefore, it is reasonable to replace the one-dimensional problems in (18) by approximate versions
which can be solved efficiently. We consider two alternatives as follows.

In the first, we replace the collocation discretizations of the one-dimensional Helmholtz
equations in (18) by tau discretizations. Tau approximations have the same exponential
convergence as collocation method, but can be solved directly in O(N log N) operations. This leads
to the tau version of the line relaxation method, and the total work of one z or y-direction sweep is
O(N?%log N). As we will see below, this tau version turns out to be an efficient multigrid smoother.

In the second, we replace the collocation discretizations of the one-dimensional Helinholtz
equations in (18) by finite-difference discretizations. This leads to the finite-difference version of
the line relaxation method, which has two obvious advantages over the tau version. First, it is
faster because it eliminates the transforms required in tau version, thus reducing the operation
count for solving each one-dimensional problem from O(N log N) to O(N). Second, it can be
extended to solve more generalized problems, e.g., problems with variable coefficients. As we will
see below, this finite-difference version also turns out to be an efficient multigrid smoother, even in
the case of variable coefficients.

Analysis

As in the case of the pointwise preconditioned Richardson relaxation, we can analyze the
performance of the line relaxation methods described above by computing the eigenvalues of the
corresponding interation matrices. Because the tau version cannot be expressed in matrix form
like (18), we will only do the analysis for the collocation and finite-difference versions. Note that
the tau and collocation versions are nearly the same, so the analysis for collocation version should
give a good prediction for the performance of the tau version. In this section, we will give details of
the analysis for finite-difference version and only list results for collocation version.

Smoothing Analysis

For the finite-difference version of the line relaxation iteration, the error evolution is described
by
E™ 9 — [T — w(H/ 4+ V)T (H + V)] B, (19)

E* «— [I = w(Ha + V)7 (H + V) E™4, (20)
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where Hf4 and V¢ are the finite-difference analogues of the collocation discretization matrices H
and V, respectively. Therefore, the error evolution matrix for one relaxation is

S =[I — w(Hg + VIO H+ VT —w(H+ V)T H+ V)] (21)

The matrices Sy = (Hf4+ V) {(H+V)and Sy = (Ha+ Vf4)~1(H + V) have the same
eigenvalues (since z and y can be interchanged in the Laplacian operator), so we can focus on
just the z-direction sweep (19). The eigenvalues of Sy are all positive real numbers, so we can
use formulas (14) to obtain approximate values of w and i (squaring [ to represent the effect of
both the z and y sweeps). These values are listed in Table Il for N < 32, along with the optimal
relaxation parameter w and corresponding multigrid smoothing factor L = p(GS) computed
directly. These results suggest that for large values of truncation number N, wop: =~ 0.6 and

i < 0.5, independent of the grid size. Corresponding results for the collocation version are listed
in Table III.

Multigrid Analysis

For a multigrid V (n1, ng)-cycle, if we use zeros as initial guesses on all coarse grids (which is
a natural choice because the coarse-grid solution is a correction to the solution on the next finer
grid), then we can write out the error evolution matrix explicitly as

M =S™[I—PGR(H+V)]S™. (22)

This represents a procedure of n; pre-relaxations (S™) followed by a coarse-grid-correction

(I — PG R(H +V)) and then ny post-relaxations (S™2). The matrix S is the error evolution
matrix of one relaxation on the finest grid defined in (21). The central part I — PGR(H +V)
represents the coarse-grid-correction, where R represents the fine-to-coarse grid transfer (we use
injection) and P represents the coarse-to-fine grid transfer (we use Chebyshev interpolation). The
matrix G is defined on the next coarser grid as follows: on the coarsest grid, G = (H + V)~1 (which
means the coarsest grid problem is solved exactly); otherwise,

G=[1-M*H+V), (23)

which represents a multigrid solution procedure on that grid. Note that (23) is actually a recursive
definition, since the matrix M in (23) includes another matrix G on the next coarser grid.

Tables II and 111 also list computed values of smoothing factor per sweep ps = (p(M )1/ (n1tm2)
for the case w = 0.6, n; = 2, and ng = 1. These results suggest that the smoothing factor of the
line relaxation method is less than 0.5, independent of the grid size. Note that while we could also
use Chebyshev restriction instead of injection for the fine-to-coarse grid transfer R, our numerical
experience shows very little difference between these two choices.
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Table I1. Analysis of the Finite-Difference Version

Eigenvalues of Sy By (14) By computation
N Amax )\qua w 7 Wopt 7 Hs
4 1.995 1.000 0.669 0.110 0.58 0.110 0.181
8 2.513 1.000 0.569 0.186 0.60 0.168 0.293
16 2.780 0.995 0.530 0.224 0.60 0.271 0.364
32 2.898 0.815 0.539 0.315 0.60 0.366 0.421

Table ITI. Analysis of the Collocation Version

Eigenvalues of Sy By (14) By computation
N Amax Aqua. W ﬂ' Wopt .H Hs
4 1.651 1.000 0.754 0.060 0.68 0.120 0.302
8 2.322  0.922 0.616 0.186 0.60 0.216 0.328
16 2.701 0.810 0.570 0.290 0.58 0.326 0.380
32 - 2.869 0.700 0.560 0.370 0.60 0.410 0.428

Computational Results

We have implemented the tau and finite-difference versions of the line relaxation scheme
described above in a Chebyshev collocation multigrid solver for the two-dimensional Helmholtz
problem

)\u(:r:, y) - Au(:z:,y) = f(m,y), I(EI, ly] <1,
u(z,y) = 9(z, ), lz| = 1,1yl = 1,
with various choices of f, g, and A. For both versions, the observed convergence factor per sweep is

less than 0.5 for all cases tested, in agreement with the analysis above. The finite-difference version
turns out to have slightly better convergence factors than the tau version, but the difference is

minor.
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Comparisons with Other Methods

In this section we compare the line relaxation spectral multigrid method developed above to two
other methods for solving the two-dimensional prototype problem (2). The first is a conventional
finite-difference multigrid method; the second is a matrix diagonalization technique. We do not
compare with the method of Zang et. al. (ref. 3) since the details presented in that paper were not
enough to allow programmg the method. All computations are done on a SUN SPARCstation2
using double pl‘eClSlOIl the machine round-off error is about 2.22 x 10716

Conventional Finite-Difference Multigrid Method

The finite-difference discretization is the usual second-order five-point scheme on a uniform
grid. The finite-difference multigrid method uses Gauss-Seidel (Red-Black) iteration as a relaxation
scheme, the fine-to-coarse grid transfer is half-injection, the coarse-to-fine grid transfer is bilinear
interpolation, and the multigrid V-cycle algorithm is used.

According to computations, the average execution time of one V' (2, 1)-cycle of the finite-
difference multigrid method is approximately (0.56 x 10™4) N2 seconds, and (0.21 x 1073) N?logy N
seconds for line relaxation spectral multigrid method. Therefore, for the same grid sizes, one
V (2, 1)-cycle of the finite-difference multigrid method is approximately 3.75 logy N times faster
than the line relaxation spectral multigrid method.

However, because spectral methods have exponential convergence and finite-difference
methods only have polynomial convergence, when high accuracy is required, finite-difference
multigrid methods must use much bigger grid sizes than spectral methods. The result is that
the line relaxation spectral multigrid method is faster than finite-difference when high accuracy
is required. As a specific example, consider the prototype problem (2) with true solution
u(z,y) = e2**¥ cos(n(z + 4y + 0.25)). The relation between accuracy and execution time required
to achieve that accuracy is plotted in Figure 1 for both methods. We can see that when low
accuracy is required, the finite-difference multigrid method is much faster than the line relaxation
spectral multigrid method, but the situation is reversed when high accuracy is required. The
crossover point for this problem is at an accuracy of about one percent error. The same conclusion
would hold for finite-difference methods of higher (fixed) orders, although the crossover point
would shift. Variable-order finite-difference methods could be expected to perform more like the
spectral method, at a cost of considerable complexity.

Matrix Diagonalization Technique

The matrix diagonalization technique is introduced in (ref. 5) as a direct solver for the
Chebyshev spectral approximation to the Poisson equation with Dirichlet boundary conditions.
This technique requires a preprocessing step, which involves computing the eigenvalues and
eigenvectors of a one-dimensional operator matrix (O(N 3) operations), and a solution step, which
involves one-dimensional matrix multiplications (O(N3) operations).
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Figure 1. Execution time: LR-SMG vs FD-MG

To compare execution times, we note that the line relaxation spectral multigrid method
usually takes approximately 10 V-cycles to solve to the level of machine precision. Thus, Figure 2
compares the execution time of 10 V-cycles of the line relaxation spectral multigrid method with
the execution time of solving the same problem directly by the matrix diagonalization method
(including the preprocessing step). These results show that the matrix diagonalization method is
quite fast for small grid sizes, but as the grid size grows, it becomes slower than the line relaxation
spectral multigrid method. This is because the line relaxation spectral multigrid method is an
O(N?log N) method, while the matrix diagonalization method requires O(N 3) operations (even
without the preprocessing step).

The matrix diagonalization technique is very efficient for problems with constant coefficients,
especially when repeated solutions are required. However, this technique can only handle problems
with constant coefficients. As shown below, the line relaxation spectral multigrid method is able to
solve problems with non-constant coefficients.

225



16w0 T 1 1 T N T T T
LR-SMG --- Line Relaxation Spectral Multigrid Method

140001 MD --- Matrix Diagonalization Technique T

T

12000

:

Execution Time (seconds)
: B
T T

4000

2000

0 100 200 300 400 500 600 700 800
' ' Grid Size

Figure 2. Execution time: LR-SMG vs MD

Extension to PTQ]?IG:D}S,,,W&@ Variable Coefficients

As a test problem with variable coefficients we consider

0 g 0 o}
-2 (a(a:, D 2u, y)) -2 (b(z,y)@u(m, y)) =9, bl <1 20
" wz,y) =g(z,y), |zl=1Ly =1,
where the coefﬁcient‘fﬁ»iriétégﬁlﬁn(fiﬁthe true solution are -
a(z,y) = b(z,y) = 1 + e Prl+w), (25)
: T, . i
u(z,y) = sin(arz + Z) sin(ary + Z) (26)

The parameter € measures how far the coefficients are away from the constant 1, 3 measures the
oscillation of the coefficients, and o measures the oscillation of the solution.
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Implementation of the Line Relaxation Spectral Multigrid Method

The implementation of the finite-difference version of the line relaxation methed is basically the

same as for the constant coefficient case except for the following:

1.

Computational Results

On each grid line, the one-dimensional problem is not a Helmholtz equation anymore. For
example, on a gird line y = g, which is parallel to z-axis, we now solve a problem like

—gil; (a(:v, yk)ba_xv(x’ gk)) - Vd(-’lf, yk)v("l",yk) = h(:l:, yk) (27)

by using a second-order finite-difference approximation on the Chebyshev grid.

To compute values of V4(Z;, 1), note that the interior equation in (24) can be rewritten as

—a———————b—"—‘"'—yzf> |$l,|yl <1 (28)

and the Chebyshev collocation approximation to (28) can be written as
{~AD,y — A;D;} U — {~BDy, — B,D,}U = F, (29)

where A and B are diagonal matrices containing the values of the coefficients a(Z;, 7r) and
b(Z;,3x), As and B, are diagonal matrices containing the values of the derivatives z%a(:ij, Uk
and a%b(ij, 7ix) (which can be computed from values a(Z;, &) and b(Z;,7x)), and Dz, Dz,
Dy, and Dy, are Chebyshev differentiation matrices. Therefore, H = —ADz; — A;D; and
V = —BD,, — ByDy; generating the diagonal entries of % and V is straightforward.

On coarse grids, we need to use so-called “filtered” coefficients a(z, y) and b(z,y) to formulate
the coarse grid problems; i.e., the coefficients a(z, y) and b(z, y) are evaluated on the finest grid
and then transferred to the coarser grids by Chebyshev restriction (ref. 3).

We have run the line relaxation spectral multigrid method for different values of parameters ¢, o

and 3. For a = 1.0 and N, = N, = 32, the smoothing factor is graphed in Figure 3 as a function of

¢ and a. Here we have chosen to measure the smoothing by the “smoothing factor per work unit”
defined by pp = (r2/ rl)Tﬂ/ 7 where r; and 7y are residual norms before and after one multigrid
V-cycle, 7 is the execution time of one cycle and 7y is the execution time of one relaxation. These
results show that for a wide range of € and 3, the method converges relatively quickly.

In (ref. 3) the same test problem (24) was solved using the Richardson relaxation (5) using
two-dimensional finite-difference preconditioning; incomplete LU decomposition was used to
approximately solve the finite difference approximation on the Chebyshev grid. With only limited
details of the formulation and results of this method, it is difficult to make a complete comparison
to the line relaxation method considered here. However, it appears that the line relaxation method
gives convergence factors at least as small as those in (ref. 3); moreover, it is simpler.
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Figure 3. Smoothing factors for problems with variable coefficients.

CONCLUSIONS

The pointwise preconditioning is simple and fast to apply. It is very efficient for one-dimensional
problems. Unfortuna,tely, it does not glve fast multigrid convergence for two-dimensional problems.

" The line relaxation method provxdes a new approach to accelerate the multlgnd Chebyshev

spectral method for solving two-dimensional elliptic problems It is efficient (yielding multigrid

smoothing factors no larger than 0.5 per sweep) and i mexpenswe (requmng O(N 2 log N ) operatlons
per sweep) SR et mERtToriin S -

When high accuracy is required, the spectral multigrid method using line relaxation is orders
of magnitude faster than a conventional finite-difference multigrid method, due primarily to the
exponential convergence of the spectral discretization. Compared to other methods for solving
the discrete spectral equations, the line relaxation method also has advantages: it is comparable
in efficiency to matrix diagonalization and finite-difference preconditioned Richardson relaxation,
but can solve problems with variable coefficients which the former cannot, and is simpler than the
latter.
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SUMMARY

We show that by certain transformations the boundary layer equations for the class of

non-Newtonian fluids named pseudoplastic can be generalized in the form

Au+p(z)u™>=0, z€QCR*, n>1

under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of
the existence, uniqueness, and analyticity of the solutions for this problem. We also establish
numerical solutions in one- and two-dimensional regions using multigrid methods.

INTRODUCTION

In the last two decades, solutions of the singular semilinear equation
Au+p(z)u™> =0, z€eQCR" (1)

have been extensively studied. Various existence and uniqueness results are given in [1], [2], and (3],
to name a few. More recently, in [4], it is shown that by certain transformations the boundary layer
equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the above
form for the ODE case n = 1. Under this physical interpretation the above equation, considered in
the context of partial differential equations (n > 1), has been the subject of much study. The
equation has a unique classical solution with a bounded domain 2, where p(z) is a sufficiently
regular function which is positive on Q [5]. There exist entire solutions with A € (0,1) for p(z)
sufficiently regular ([6], [7]). This is generalized to all A > 0 via the upper and lower solution
method ([8]) or other methods ([9]).

*This work was supported in part by the the Naval Postgraduate School Research Council under grant No. ZZ867-

77899 / 5986
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The following sections provide a survey of both theoretical and numerical results in this area
including a physical derivation [4], existence theorems for both the ODE and PDE cases with a
proof of a main result [8], and our numerical results. We conclude with a discussion of a new
technique and some open questions for further research.

PRELIMINARIES

) . ou
A non-Newtonian fluid is called pseudoplastic if the shear stress 7 and the strain rate 5y e
Y

related as s
Ou
kl—
dy
~where k is a posmve constant That is, the absolute value of the shear stress increases with respect
to the absolute value of the strain rate less than lmearly
~ In this paper, we study solutions of the singular sermlmear equatlon (1) where A > 0 and Q is a
domain in R™, n > 1. In the following section we show that through a series of transformations the
boundary layer equations for the class of pseudoplastic fluids under the classical conditions for a
steady flow over a semi-infinite flat plate can be generalized into the well-known Blasius problem

1+ £ =0,
J0) = £(0)=0, fl(oo)=1

for the shear function, which arises from the standard Newtonian fluid case.

7| =

,?0<a<1

' DERIVATION OF THE PROBLEM

For n = 1 equation (1) arises in the study of pseudoplastic fluids, We consider a two-dimensional

mcompresmble flow of low viscosity along a plane wall. We denote by 7 = (u v) as the fluid velocity
in the boundary layer and .. (z) in the main stream. Since there is no velocity on the wall a.nd the

fluid takes the velocity of the main stream u. (z) outside the boundary layer, we see that 5—— i§
Y

large near the wall which causes a significant transfer of momentum in the z direction.
The boundary layer equations for this model include a continuity equation and a momentum
equation in the z direction.

o, ou_
oz Oy
Ou , Ou 107y

8z +v By pc?y )

with boundary condtions
u(z,0) = v(z,0) =0,

u(z,00) = u ()
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Figure 1: 2-D flow of low viscosity along a plane wall.

[ 4

0
where 75, = K éi; is the shear stress.
Note that (2) has 2 coupled equations in 3 dependent variables, u, v, and 7.,. To reduce it to a

single higher-order equation in only 1 dependent variable, we introduce the Lagrange stream

function ®(z,y) such that
oo 0o

U= —, U=——-.
' ox

Jy

Then the momentum equation becomes

o® &#o 9® 9@ o 0P 3)

—_— ) —— e —

5y o0y B Ov oo

K
where v = —, while the continuity equation is clearly satisfied by ®.

Let f = ;n= by\/%, for some a,b. Then (3) becomes

ad
=0 4)

with 7

f(0)=f(0)=0

f(o0) =1
where f = f(n). (Observe that if a = 1 (4) is the well-known Blasius equation.) Employing the
Crocco-like transformation

u=f(n), g)=uv=f"(n

(4) becomes
9°¢" + (@ = 1)g* ' (¢)* +u=0
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with ¢'(0) = 0, g(1) = 0, where g = g(u). Finally the transformation G = ¢ leads to the singular
boundary value problem

G +auG V=0, O<ua<l,

G'(0)=G(1)=0

of the form (el) with A = =z, p=-=.

A

QI’—'

EXISTENCE AND UNIQUENESS RESULTS -

In the first part of this section we study the results in finite and infinite domains; in the second
we discuss methods that are commonly used to approach the problem.

Theorems

Let € be a bounded domain in R*, n > 1 with smooth boundary O (of class C***, 0 < @ < 1).

Let p(z) be of C*(Q) and positive on I, X > 0.
Theorem 1 (La*’er-ﬂ[c[\(nna [5]). The problem

Au+p(xiu> =0, ze
Ulan 0

has a unique positive solution u(:c) in Q withu € C’2+°‘(Q) N(Q). Furthermore let ¢ be an
eigenfunction corresponding to the smallest eigenvalue Ay of the problcm

Ap+Ap=0, €
¢ loa= 10

 such that d1(z) >0, z€Q and X > 1. Then fhcrc eusfs a umque b],bz > 0 such that
gy OV <u< bagt/ 1+
on .

In the case 2 = R™, n > 1, we study the results under conditions n =1, n =2, n > 3. Observe
that if n = 1, since p,y > 0, 4" + py~* = 0 we have y” > 0 and thus 3’ |. Hence 0 < 3/(c0) < 0.

Theorem 2 (Tualiaferro [3]) The problem

v +p(x)ur =0
yle=a -
Y(0) =0

has a unique positive solution y(x) if

/x' 7 p(z) dx < o0

1

where o, ¢ € RY, &> 0. Furthermore y{oo) < oo if and only if o7 zp(z) dr < oco.
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The following theorem describes the asymptotic behaviors of the solution.

Theorem 3 (Taliaferro [3])

o //0<y(o0) <oo and [[*z *!p(x)dr < 00, a,b >0 then
y(e) = oz +b—a-X(1 +o() [ (€ - D) p(E)dk:
o /[y(00) =0 and [§" zp(z)dxr < 00, a > 0 lhen

y(z) = a—a=A(1+o(1) [ (6 - o)p()de.

e ([p,q >0 are continuous on [0,00), lim, . %% =R >0 and

2/ +p(x)z=* =0, 2(0)=0;
w”’ +g(z)w > =0, w(co)=0

and f;° zp(z)dz = oo, then lim, . w/z = Ri+s.
Theorem 4 (Kusano-Swanson [7]). The problem
Au= f(lz))u™> =0, zeR, 0<A<1

has an entirc positive solution in R® with logarithmic growth at co if f(t) >0, t >0,
f(t) € C(0,00), and

/oo t(logt) > f(t)dt < co.

A function u(z) is said to be an entire solution of (1) if u € CZ,
pointwise in R".

(R™) and u satisfies the equation
Theorem 5 (Shaker [8]) The problem
Au+p(z)u™> =0, z€R*, A>0
has an cntire positive solution u(z) such that
o < u@)|z]™ < e

for some c1,¢0 and 0 < q@g< 1 asz — 0o if

1. p(z) € Cf . (R™), p(x) > 0 for x € R*\{0}

2. there evists 0 < e < 1 such that eg(|z|) < p(x) < ¢(|z|) where ¢(t) = maxz— p(z). t € [0,00);

3. [ tr D g(1)dt < oo.
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Methods

In general there are two methods that are commonly used in proving existence and uniqueness of
solutions for equations of type (1), namely Schauder’s fixed point thocrem and Barrier Methods.
Since the former is standard we elaborate here only on the latter.

Let Q be a smoothly bounded domain in R™. ¢(x) is said to be an upper (lower) solution of the
problem

Au+ f(z,u) =0, z€f (5)
u [ag= 0

if Ap+ f(z,0) <0, 2€Q, ¢(z) >0z €N (d+ fz,¢) 20, z€Q, ¢(z) <0z € Q).

Theorem 6 (Sattinger [10]). Let ¢1 be an upper solution and ¢z be a lower solution of (5), and let
f be locally Holder continuous in Q. If ¢1(x) > ¢a(x) in Q, then (5) has a solution w such that
$2(z) < ufz) < ¢i(z), T €

In the case when Q@ = R™ we say ¢ is an upper (lower) solution of
Au+ f(z,u) =0 (6)
if Ag + f(z, ) <0z € R (for lower solution, A¢ + f(z,¢) > 0).

Theorem 7 (Ni [11]). Let ¢ and ¢z be an upper and a lower solution of equation (6), such that
$1> ¢ox € R™. If f is locally Holder continuous in « and locally Lipschitz continuous in u, then
(6) has a solution u with ¢o(z) < u(z) < h1(z), = € R™.

An Example.
Consider the problem
wW+du—-ut=0, ze(0,n)
u =0, z=0,m.

It is easy to show that ¢;(x) = Rz!/2 for some R large is an upper solution, and ¢;(x) = esin z for
some € small is a lower solution of this problem. Clearly ¢,(z) > ¢»(z) for z € [0, 7]. Thus by the
above theorem there is a solution u(z) such that esinz < u(zx) < Rzi, z € [0, 7]. Since the problem
is homogeneous we conclude that the problem has at least three solutions, namely, u, —u and the
trivial solution.

MULTIGRID SOLUTION OF THE PROBLEM

In this section we present some numerical results for solving the problem

Au+plr)u™> =0 z€Q
u(z) =0 =z €.
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Specifically, we describe Newton’s method for non-linear systems to solutions and multigrid

V — cycle and FMV methods. We have implemented all of these methods for both the one- and
two-dimensional cases, using (respectively) the unit interval and the unit square for 2. In each case
we use a straightforward finite-difference discretization, employing the standard second-order
difference approximation for the second derivative operator. For the one-dimensional problem we
define the grid of (N + 1) points i = jh, for k=0,1,... N, where h is the mesh parameter 1/N.
The second derivative operator is then approximated by

d*u

_ Ug—1 — 2ug + Ugql
dz?
Ty

h2

+ O(h?), (7)

where u; approximates u(z). For the non-linear term p(z)u(z) > we use the nodal values, p up™.
Since uy = uy = 0, this results in the non-linear system of equations

(-2 1 1 [ w ] [ pu® ] 0]
1 1 -2 Ug D2 U;A 0
72 + : =10 (8)
1 -2 1 UN_2 PN_2UN" 5 :
| 1 -2 ] L uNn-1 | | PN-1 u,‘vﬁl 1 i 0 ]

Letting u represent the vector of unknowns, we may write the system as Hu + g(u) = 0, where H
is the tridiagonal matrix and g is the non-linear vector function.

For the two-dimensional case we take the tensor product of the (N + 1)-point grid in the z
direction with an identical (IV + 1)-point grid in the y direction, yielding an (N + 1)2-point regular

grid covering the unit square. The difference operator for the two-dimensional problem is

Fu
oz?

Tjk

o
Oy?

Uj- 1k — 2Ujk + Ujr1k

Uj k-1 — 25k + Uj k41

h2

h2

+ O(h?).

(9)

Numbering the unknowns lexicographically by lines of constant y, we obtain the nonlinear system

A B 17 w ] [ wy ] [ 0]
B A B Ug Wao 0
S + = |0
B A B UN-2 WN-2
| B A_ _uN_1_ _’wN_1_ _0_
where here u; denotes the (N — 1)-length vector of unknowns u; x for k=12,...,N—-1

(10)

corresponding to the j* grid-line in the y direction, and A and B are (N — 1) x (N — 1) matrices

[ —1

-1
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The (N — 1)-length vectors w; contain the non-linear entries p; x u;’,\c, fork=1,2,...,N — 1. Once
again, we may write the system as Hu + g(u) = 0, where H is the block tri-diagonal matrix and g
is the non-linear vector function containing the w;’s.

Solution techniques

The classical solution technique for (8) or (10) is to apply Newton's method for non-linear
systems. We write the system as F(u) = 0, where F(u) = Hu + g(u). Each step of the iteration
is then given by

u — u — [Jp(u)] " F(u)

where the Jacobian of the system is given by
[Jr(w)] = H + D

with H the linear part of F and D a diagonal matrix whose diagonal entries are the derivatives of
the entries of g, for example —Ap(z;x)u; 2.

Naturally, the Jacobian is not inverted at each step, but rather, we solve the system
[Jr(w)]y = —F(u) and then make the correction u + u + y. We examined two methods for
solving the system at each step, namely LU decomposition and a multigrid FMV cycle.

Newton’s method converges quadratically. However, since each step involves inverting a system,
it tends to be very slow. While the use of the FMV solver speeds the method up somewhat, it still
is slower than the techniques we present next. It has long been known ([12], [13]) that on certain
problems non-linear analogs to the classical Jacobi or Gauss-Seidel iteration methods could be
employed with some success. Technically, one sweep of such a method means that for
j=1,2,...,N—1 (or (N — 1)? for the two-dimensional problem) one solves, via the scalar
Newton’s method, the j** non-linear equation in the system F(u) = 0 for the j** unknown. As in
the linear case, if the old values u are used throughout the sweep this is the Newton-Jacobi method,
while if the updated values are employed as they become available it is the Newton-Gauss-Seidel
method. In practice the j** equation is not actually solved, but rather, a few (one or two) steps of
the scalar Newton's method is performed on each equation in turn.

The Newton-Jacobi and Newton-Gauss-Seidel iterations, however, typically behave in the same
fashion that is observed in their linear counterparts. That is, the iteration generally progresses
rapidly toward a solution with the first few sweeps, but then stalls out so that each additional sweep
produces very little improvement. The reason behind this is the same as that seen in the linear case.
The method stalls after the non-linear relaxation has successfully eliminated the oscillatory portion
of the error, which it eliminates rapidly, but is unable to effectively treat the smooth portion of the
error. This is precisely the difficulty that multigrid methods were devised to overcome.

At the heart of multigrid is the coarse-grid correction [14]. Many common relaxation iterative
relaxation methods for solving a /incar problem Au = f have the property that the relaxation
effectively eliminates the high-frequency (oscillatory) components of the error but leave the low
frequency (smooth) components essentially unaffected. However, because the error is smooth after
the relaxation, it may be represented accurately on a coarser grid, on which it also appears more
oscillatory (relatively). Relaxation on this coarser grid then eliminates the oscillatory components
of the coarse-grid error, which cannot be eliminated on the fine grid. The coarse-grid correction for
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a linear problem may be written as
ub — PYut + I, (AP (F - AMPPUY) (11)

where P is the relaxation matrix, v is the number of relaxations, I, is a prolongation or
intcrpolation matrix mapping coarse-grid vectors to the fine grid, I3* is a restriction matrix
mapping fine-grid vectors to the coarse grid, and A%" is a coarse-grid version of the original matrix
A. A crucial feature is that on the coarse grid 2", the problem to be solved is the residual equation
Ae = r, where the residual is defined r = f — Au and e is the error. That is, if u* is the exact
solution, then Ade = A(u* —u) = f — Au=r.

For nonlincar problems the residual equation doesn’t hold. Instead, we write the nonlinear
equivalent of the residual equation,

Flu+e) — Flu) = r.
This equation is to be solved on the coarse grid, so we write
FAMIPhb ) = FA(IhaP) = IR(fP - Fhu), (12)
or
FPu) = IR - PR + F)
The coarse-grid correction is then performed by solving (12) for u?* = I*u* + €**, and then
making the correction u® « u* + If (u?* — I?"u*). This gives the full approximation scheme [15]
uh — PY(uh) + L (F) NI (fP = FMP (™)) + FMIRP PP () — LMPY(uh)),

where P is a nonlinear relaxation scheme.

For both the linear and nonlinear problems, the solution of the coarse-grid problem is computed
using the same coarse-grid correction scheme as is being employed to solve the fine-grid problem.
This leads to the multigrid V-cycle scheme, which (for the nonlinear problem using FAS) is
described recursively as follows.

ut — FASVMu®, f*01,1)
1. Perform 1 non-linear relaxation sweeps times on F*(uh) = f* with initial guess u”.
2. If Q" is the coarsest grid, then go to 4. Else:
£ = IR (fh = FR(uh) + P (Ihu?)
u?h — 0
uh — FASV2R(u2h, 2 vy, 1).
3. Correct uh — uP + IB, (u® — IFuh).
4. Perform v, non-linear relaxation sweeps times on F*(u*) = f* with initial guess u™.
An important consideration for this (or any) iterative method is the choice of a good initial
guess. Clearly a better initial guess will reduce the overall effort required to obtain an acceptable
solution. A standard approach in multigrid is to obtain a good initial guess by first solving the
problem on a coarse grid, and then interpolating that solution to the fine-grid for use as an initial
guess. Solving this coarse-grid problem, in turn, will be easier if an initial guess is obtained by first

solving the problem on a still coarser grid. Applying this idea recursively leads the Full Multigrid
FM( scheme, which (applied to the non-linear F:{S1" scheme) may be described as follows:

uh — FASFMG"(u*, v, 1)
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1. If Q" is the coarsest grid, then go to 3. Else:

£ = (P — PH) + ()
wh — 0

u2h — FASFMG2h(u2h, f2h, U],Vz).
2. Correct ut «— u? + IB u?*
3. ub — FASVR(h, fP, 0, 1,).

Numerical results for multigrid methods

We have implemented the FASV using Newton-Jacobi and Red-black Newton-Gauss-Seidel
iteration schemes. (Our implementation was in Matlab using vector arithmetic. We elected not to
analyse Newton-Gauss-Seidel since it is not vectorizable. We did encode it, however, and found
that the slowness of the for loops overwhelmed the speed of convergence.) Several different choices
for A, p(z) and p(z,y) were used, as were several sets of relaxation parameters.

Table 1 gives some quantitative information regarding the performance of the method,
comparing convergence rates for various choices of parameters. The results shown were obtained
using the Red-black Newton-Gauss-Seidel relaxation. We find that for this problem we are able to
obtain convergence rates that are similar to those obtained on the linear elliptic model problems for
which multigrid is best known ([14], [16], [17]). Data for the one-dimensional problem are not
shown, however, they are very similar to the two-dimensional case.

Dimension p(Z) A | Fine-grid | Average V-cycle
size convergence factor

2 | 2zy 2| 63 x63 0.051

5 0.050

8 0.078

2 2sin(2nz) sin(ry) | 2| 63 x 63 0.060

5 0.063

. 8 0.104
2 z/y 2| 63 x63 0.059

2 0.060

8 0.086

Table 1

~ Additionally, we have implemented the FASFMG using Newton-J acobi and Red-black
Newton-Gauss-Seidel iteration schemes. Again, we find that the performance of the method is
compatible with that found for FMG applied to the linear model problems ( [15], [17]).

CONCLUSIONS

Our survey of existence and uniqueness results has shown the problem

Au +plz)u™ =0 z€Q
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is guaranteed to have unique solutions under certain conditions, although these solutions will not be
known in closed form. The problem arises in certain non-Newtonian fluids problems, so there is
some interest in actually computing solutions. We have shown that for homogeneous Dirichlet
boundary conditions on the unit interval and the unit square, multigrid methods appear to provide
an efficient means of solution for reasonable choices of p(z).

We note, however, that an actual convergence proof for the F/AS method would be very difficult
to obtain, in that such proofs normally require that we be able to decompose the space of grid
functions into two operator-subspaces. Error components in one are annihilated by relaxation,
while those in the other subspace are annihilated by coarse-grid correction. While such analysis is
achieved for linear problems, non-linear problems generally can only be treated by linearization
near a solution. In point of fact, the literature is remarkably sparse in the area of founding theory
for the A4S method. S

A new technique, called multilevel projection methods (PML) has recently been introduced, [18]
in an effort to provide a unifying, thematic approach to the design of a multilevel solver for a given
problem. The main feature of PM L methods is that the only basic choices that must be made
concern the subspaces that will be used in relaxation and coarsening. All other components of the
method, such as interlevel transfers, scaling, coarse-level problems, etc., are determined by
projection between appropriate subspaces. In [18], several prototypical problems are developed to
illustrate the principals involved. It now appears that the best hope of obtaining a strong founding
theory for multilevel treatment of nonlinear problems may well be through careful and judicious
application of PML, and our future research into solution methods for the problems we have
discussed here will be aimed in that direction.
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A Multilevel Adaptive Projection Method for
Unsteady Incompressible Flow N 9 4 /‘

Louis H. Howell
Lawrence Livermore National Laboratory
Livermore, CA 94550

ABSTRACT

There are two main requirements for practical simulation of unsteady flow at high
Reynolds number: the algorithm must accurately propagate discontinuous flow fields
without excessive artificial viscosity, and it must have some adaptive capability to
concentrate computational effort where it is most needed. We satisfy the first of
these requirements with a second-order Godunov method similar to those used for
high-speed flows with shocks, and the second with a grid-based refinement scheme
which avoids some of the drawbacks associated with unstructured meshes.

These two features of our algorithm place certain constraints on the projection
method used to enforce incompressibility. Velocities are cell-based, leading to a Lapla-
cian stencil for the projection which decouples adjacent grid points. We discuss fea-
tures of the multigrid and multilevel iteration schemes required for solution of the
resulting decoupled problem. Variable-density flows require use of a modified projec-
tion operator—we have found a multigrid method for this modified projection that
successfully handles density jumps of thousands to one. Numerical results are shown
for the 2D adaptive and 3D variable-density algorithms.

INTRODUCTION

The incompressible flow algorithm presented by Bell, Colella and Glaz [3] combines
the original projection method of Chorin [9, 10] with the Godunov methodology
developed by Colella [11] to yield a robust scheme which is second-order in both
space and time. In [5] Bell and Marcus extend this method to handle flows involving
spatial density variations.

Originally developed for gas dynamics problems with strong shocks, the second-
order Godunov technology gives the algorithm the ability to propagate discontinuous

*This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48. Support was provided by the
Applied Mathematical Sciences Program of the Office of Energy Research under contract No. W-
7405-Eng-48, and by the Defense Nuclear Agency under IACRO 93-817.
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flow fields or density jumps without introducing nonphysical oscillations, violating
conservation laws, or employing unnecessary dissipation. The resulting schemes are
therefore appropriate for studying unsteady flows with little or no viscosity. The
projection portion of the algorithm enforces incompressibility without the need for
an artificial pressure boundary condition.

The most natural discretization for Godunov methods involves storing all velocity
components at the centers of grid cells. Node-based variants are not difficult to
obtain, but the requirement that all components be stored at the same points is a
fairly strong one. Formulations of the projection using the staggered grid system of
Harlow and Welsh [13] are thus largely incompatible with the Godunov approach. Use
of collocated velocities, however, leads to unusual difference stencils for the projection
which decouple adjacent grid cells.

We have developed extensions to the algorithms of [3] and [5], the most important
of which are a reformulation of the methods on an adaptive hierarchy of grids, and
the use of multigrid and multilevel iteration techniques to speed up computation of
the projection. While we have made some attempt to keep separate the questions of
how to formulate the projection versus how to solve it, there has inevitably been some
interplay between these two halves of the problem. The decoupled difference stencils
used by the projection in uniform parts of the grid place certain requirements on the
multigrid scheme, while the need for efficient convergence of the multilevel iteration
influences the choice of derivative stencils across coarse-fine grid interfaces.

These issues, concerning the formulation of the projection and its solution via
multigrid methods, are the primary concern of this paper. Most of this material
is new, though the need for a decoupled multigrid stencil was discussed briefly in
[4]. The detailed formulation of the Godunov module, methods for error estimation
and regridding, and the addition of viscous terms to the equations are all discussed
in another paper, currently in preparation. These subjects will therefore be given
only the most cursory attention in the present work. We will, however, describe
the time-stepping procedure, so as to place the projection in its proper context as a
component of the algorithm. This will be part of the general overview given in the
next section. The section after that discusses the multigrid projection, while the final
section presents some examples and numerical results.

_OVERVIEW OF THE METHOD

The equations we are attempting to solve are the incompressible Euler equations
with finite-amplitude density variation,

U, +(U-V)U = o (1)
pt+ (U -V)p = 0, (2)
v-U = 0, (3)



where U represents the velocity field, p represents the hydrodynamic pressure and p
represents the local mass density. We will denote the z and y components of velocity
by u and v, respectively.

The range of density variation in a problem may be moderate, as in the case of two
or more different gases mixing in a combustion chamber, or may be relatively large, as
in the 800-to-1 density jump at a water-air interface. Of course, many flows of interest
do not involve density variations at all—for these problems (2) may be discarded, or
similar equations may be used to advect passive quantities which do not affect the flow
field. (Our implementation of the adaptive scheme currently handles only constant-
density flows.) Flows with very small density variations are an intermediate case, as
they may not require the full variable-density formulation. As described in [5], these
flows may be modeled using what amounts to a constant-density projection method
with a Boussinesq forcing term added to (1).

From a computational point of view the most problematic term in (1-3) is the
pressure gradient. In contrast to the compressible case, pressure in incompressible flow
plays no thermodynamic role, and cannot be determined from an equation of state. Its
only function in the equations is to indirectly enforce the incompressibility constraint
(3). The essential idea of projection methods is to eliminate the pressure entirely,
by use of an operator which projects the velocity U onto the space of divergence-free
vector fields.

The theory behind the projection operator is based on the Hodge decomposition,
which provides that any vector field V can be decomposed into a divergence-free
component V¢ and the gradient of some scalar ¢. This decomposition can be made
unique through imposition of appropriate boundary conditions, e.g., no low through
boundaries. It is also orthogonal, since divergence and gradient are skew-adjoint with
respect to the usual inner products on scalar and vector fields.

Given operators D for divergence and G for gradient, either continuous or discrete,
a projection onto the space of divergence-free fields can be written as

P=1-GDG)'D. (4)

(The numerical inversion of DG takes the place of solving the “pressure Poisson
equation” that often appears in incompressible flow algorithms.) A modification
of this projection is required for variable-density flows. We want to decompose a
field into a divergence-free component and 1/p times the gradient of a scalar. The

appropriate form is
P, =1 -0G(DsG)™'D, (5)

where 0 = 1/p and orthogonality is now with respect to a p-weighted inner product.
In terms of this weighted projection, (1) can be written as

U, =P, [(~U-V)U]. (6)

To obtain a second-order temporal discretization of this equation (and (2)), we
use a fractional step process. First, the Godunov advection procedure is used to
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compute (U - V)U and (U - V)p at the n + ' time level. The density equation can
then be advanced immediately, while the projection is applied to (I - V)U™ % to give
a divergence-free approximation to Uy:

n+l _ .n .
P—Et—p_ = —(U- V)p””—’, (7
Un-H —-yUr .
—— = P, [~ -wyu+*]. (8)

Since the p equation can be advanced first, p™+" is available for use in the projection.
The Godunov method uses (1/p)Vp™~# to approximate the effect of the incompress-
ibility constraint on Uy; the projection in (8) then yields an updated approximation
to (1/p)Vp™7 to be used at the next time step.

We will not go into detail on the internal workings of the Godunov procedure here.
Suffice it to say that using approximations to time derivatives and limited slopes (U,
etc.) at cell centers at time n, U and p are extrapolated to cell edges (faces in 3D) at
time n + 5. Upwinding rules resolve the choices between values coming from either
side of an edge, then these edge values are differenced to yield the (U - V) terms
at cell centers at time n + 1. The detailed procedure we use is very similar to that
described in [3], with the variable-density enhancements given in [5], and an improved
treatment of the transverse derivative terms (vU,, etc.) as described in [4].

For a more thorough discussion of the Hodge decomposition, the incompressible
Godunov algorithm, and the time-stepping procedure, we refer the reader to [3| and
[5]. These papers deal exclusively with the single-grid case, but the adaptive case
requires no changes to the time-stepping method and only minimal modification to
the Godunov method, e.g., interpolation into ghost cells around the edges of fine
grids. An adaptive Godunov method for gas dynamics that is similar to our approach
is described in [7]. We describe the adaptive projection at the end of the next sec-
tion; other aspects of our adaptive incompressible algorithm will be addressed in a
forthcoming paper.

MULTIGRID PROJECTION

We now discuss a multigrid algorithm for computing the variable-density projec-
tion (5). For simplicity we restrict the notation to two dimensions, but the methods
presented are immediately extensible to 3D. A three-dimensional flow example is
included in the following section.

Given appropriate divergence and gradient stencils, a projection of the form (5)
will yield a velocity field which is discretely divergence-free to the limit imposed by
roundoff error. The projection will therefore be idempotent, i.e., repeated application
will not further modify the projected vector field. This is a valuable property for an
unsteady flow algorithm since the projection will be applied at every time step. If
D = —GT7 then the projection will also be orthogonal, yielding the nearest—in a
p-weighted sense—divergence-free field.
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Figure 1: Decoupled grid structure: DgG¢ at cells marked ‘*’ depends on ¢ at ‘+’
cells, o at ‘-’ cells for x-differences, and o at ‘|’ cells for y-differences. Residuals
from ‘+’ cells are restricted by averaging to the cells marked with boxes on the next
coarser grid. For purposes of restriction and interpolation, these coarse and fine values
behave as if they were located at the points indicated by the arrows, rather than at
the centers of their respective cells.

The simplest choice is to use centered differences for both divergence and gradient:

(DU);; = _A};(uiﬂ,j —Ui_1) +—Al—y(vi,j+1 — V1), (9)
1 1
(Ge)ij = (K:E (Pisrj — ¢i—1,j)1zg(¢i,j+l - ¢>.~,,-_1)) - (10)

Composition of these then yields the elliptic stencil
1
(DoGo);; = W[Ui—l,j (Bizaj — ¢ij) + Ois1,j(Pize; — i ;)] +
1
By? [03,5-1(ij2 — B55) + i j1(Pi jra — &5 ;)] (11)

which appears in the projection. The main calculation we have to perform is the
inversion of this expression—we have to solve DoG¢ = DV for ¢ given an input
vector field V. Boundary conditions for ¢ are determined by those for the velocity
field. Slip walls (inviscid flow) yield Neumann boundary conditions for ¢, while in
periodic problems all quantities are, naturally, periodic. Though the linear system is
singular, solvability is provided by the special structure of the problem: if D = —G7,
then the range of G is orthogonal to the null space of D; therefore, any field in the
range of D is also in the range of DoG.

Ignoring the o’s for the moment, we see that (11) looks like a stretched version of
the familiar 5-point stencil for the Laplacian. The difference is that (11) provides for
no communication between adjacent grid points. Except for the effect of boundary
conditions, four distinct sets of grid points participate in four distinct linear systems.
Grids couple in pairs at wall boundaries, but the only local coupling comes from the
smoothness of the right hand side DV. Figure 1 illustrates the decoupling pattern,
including the role of the o's.
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However smooth the initial right hand side, later residuals in a multigrid scheme
tend to have significant components at all wavenumbers. Multigrid depends on the
fact that a solution to a coarsened system provides a good approximation to the
desired fine solution. It is not surprising, therefore, that every experiment we have
tried where the coarsening procedure combined components from decoupled grids
proved to be wildly divergent. On the other hand, coarsening schemes which respect
the decoupling lead to systems analogous to those arising from the usual 5-point
Laplacian, for which multigrid is quite effective.

Let us define transformations between coarse and fine index spaces as follows,

I = 2-|i/4] +imod 2, (12)
i = 4-|I/2]+Imod?2 (13)

and similarly for JJ, j. Capitals denote indices on the coarse grid, lower case on the fine
grid, and | | reduces its argument to the next lower (or equal) integer. Each coarse
point (I,J) then has four fine points associated with it: (i,7), (4,J + 2), (i +2,7),
(i +2,7 +2). These fine points do not appear to be quite centered around the coarse
point, which would complicate restriction and interpolation formulas. We observe,
however, that a centered pattern results if the points in question are each shifted to
the center of their local 2x2 blocks, as illustrated in Figure 1. This shifting does not
change the spatial relationship of any coupled points, even at the boundary, so for
multigrid purposes we can treat each coarse point as if it were centered among its
four associated fine points.

The simplest restriction formula gives a coarse cell the average of the values from
its associated fine cells, while the simplest interpolation formula distributes the coarse
value to each of the four fine cells (piecewise-constant interpolation). There are both
theoretical results and experiments, discussed in [17], which suggest that for second-
degree problems at least one of these must be replaced by a higher-order formula in
order to give satisfactory convergence rates. Our own experience does not bear out
this assertion. However, for difficult problems involving large density jumps we have
observed an improvement in robustness from use of a bilinear stencil for interpolation,

o 1
dij = ’1‘6(9¢I,J +3¢r_07+ 31,52+ dr-27-2) (14)

and similarly for ¢; ;2, etc. A smaller improvement resulted from the opposite choice,
bilinear restriction with piecewise-constant interpolation. Problems without difficult
density configurations did not show a consistent improvement in convergence rate
with either stencil. We use (14) routinely in our variable-density code, but use the
piecewise-constant formula in the constant-density adaptive code. Restriction is by
simple averaging in both cases.

We have now satisfactorily dealt with the decoupling problem for ¢, but what
about ¢, i.e., how to we form the elliptic stencil on coarser grids? It is apparent
from Figure 1 that o values do not occupy the same decoupled component of the grid
as ¢ and the residuals. Moreover, o values used for z-differences are on a different
component from those used for y-differences.



One possibility is to redefine the problem to place ¢’s at the same points as ¢’s:

(D0G¢)i’j = 2(A—1x)2[(a,-_2'j + Ui,j)(¢i—2,j - ¢i,j) + (Ui+2,j + Ui,j)(¢i+2,j - ¢i,j)] +
2(A1y)2 [(O'i,j—2 + O'i,j)(¢i,j—2 - ¢i,j) + (O'i,j+2 + ai,j)(¢i,j+2 — ¢z,3)] (15)

The hope is that o could be coarsened by averaging over associated cells, just as ¢ is.
Unfortunately, this scheme gives somewhat degraded accuracy, and more importantly,
horrible multigrid convergence rates for problems with large density variations.

The convergence rate of the multigrid cycle seems more strongly dependent on
the proper coarsening pattern for o than on any other single feature of the method.
The following procedure is in fact the only scheme we have tried that gave anything
approaching satisfactory results. We keep two different arrays of o values on coarser
grids, one for z-differences and one for y-differences. These are coarsened as follows:

1
o7y = §(U$,j+af',j+2)a
1
or; = '2*(Uzj'+0?+2,j’)’ (16)

where i’ = 2I + I'mod 2, j = 2J + Jmod 2 and ¢® = ¢¥ = ¢ on the fine grid.
Coarse stencils based on (11) and formed with these values perform well even in the
presence of sharp density interfaces. They only begin to fail when presented with
such nonphysical effects as large sawtooth variations in the density field.

One common approach to deriving coarse grid equations is to use the form RAP,
where R is the restriction operator, A is the elliptic stencil, and P is the interpolation
operator. Unfortunately, this approach does not give a usable stencil when applied
with piecewise-constant formulas for R and P, and higher-order transfer stencils give
rise to larger, more complicated coarse grid operators. Use of (16) can be motivated
in two ways, however. First, patterns like this one do appear in the RAP stencils,
even though those formulas have other drawbacks. Second, if we confine our attention
to one decoupled component of the grid, the o locations can be interpreted as the
edges between its cells. An analogy to a diffusion problem with ¢ as heat content and
o as conductivity then suggests an averaging along edges equivalent to (16).

A detailed discussion of multigrid for problems with difficult coefficients can be
found in [1]. Our approach seems adequate for configurations likely to arise in practi-
cal projection problems, however, and the authors of [1] acknowledge certain patho-
logical cases where even their more complicated schemes will fail.

For our multigrid schedule we use the pattern called FMV in [8]—the F-cycle in
[17]—with smoothing by point Gauss-Seidel. Two smoothing steps before each grid
transfer operation, up or down, seems to give the best performance. In problems with
large density variations the Gauss-Seidel method alone does not give rapid conver-
gence on the coarsest grid, so we have replaced it at that level with an exact solver.
A direct method could be used here, but we have found it more convenient to employ
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Figure 2: Examples of decoupled derivative stencils across a coarse-fine interface. The
crosses indicate a fine cell (left) and a coarse cell (right) at which y-derivatives are
evaluated. Bullets show which cells participate in the stencils. In each case, values
on the opposite side of the interface are interpolated in the transverse direction to
the circled points, giving three values on a line normal to the interface from which
the derivative can be computed.

a simple diagonally-preconditioned conjugate gradient method based on algorithm
10.3-1 and equation 10.3-3 from [12]. The conjugate gradient approach has the ad-
vantage in that it neither requires explicit storage of a matrix, nor special treatment
of the singular linear system.

This completes our description of the variable-density multigrid projection. One
variation should be noted in passing. To reformulate the 2D projection in cylindrical
(r-z) coordinates, it suffices to redefine ¢ as x/p, where z = r becomes the radial
coordinate. No other change is required in the projection portion of the algorithm.

An adaptive version of the projection method can be described, at least roughly,
in terms of a few relatively minor additions to the single-grid algorithm. The details
of the implementation, however, are considerably more complicated, and we only
have a working program for the 2D constant-density flow case. Our purpose here is
not to give a step-by-step breakdown of the entire adaptive procedure, but rather
to highlight the ways in which a decoupled Laplacian stencil affects the multilevel
projection calculation. For the sake of brevity, we have decided not to burden this
discussion with explicit formulas—we trust that all necessary expressions can be easily
derived from the descriptions given in the text.

The structure of the grid hierarchy is similar to that used in [7]. A single rectangu-
lar grid covers the entire computational domain at the coarsest level. In “interesting”
regions of the flow, finer grid patches are laid down, refined from the coarse level by a
fixed ratio 7. These finer grids are themselves rectangular, both to minimize program
overhead and to improve performance on vector architectures. If necessary, more lev-
els of grids can be created, but we impose a “proper-nesting” requirement that each



refined level [ have a border of cells at level [ — 1 separating it from still coarser levels.
The simplest choice for a refinement ratio is 2, but we often use 4 instead in order to
reduce both the number of refined levels and the amount of wasted storage allocated
to coarse grids underlying fine grids.

In contrast to approaches like that of [15], we have maintained a logical separation
between the multilevel iteration for the adaptive scheme, and the multigrid solvers
on individual grids. Our multilevel iteration proceeds as follows, where we assume
familiarity with the residual-correction formulation discussed in [8] and [17]:

- Start with an initial approximation to ¢, either 0 or the value obtained at the
previous time step. :

- Repeat until residuals satisfy tolerance:

Compute residual on all grids, including coarse-fine interfaces.

Restrict residuals from fine to coarse grids.

Set correction array to 0 at coarse level.

For each level I, from coarse to fine, do:

- Execute FMV cycle for residual equation on each grid of level I, using
values from adjacent grids as boundary conditions if necessary.

- Add correction into ¢ at level L.
- Interpolate correction to next finer level, if any.

The convergence properties of this method depend on a coarse grid solution being
a satisfactory approximation to the solution on the composite grid. In order for this
to be the case, all interpolation, restriction, and difference stencils have to respect
the decoupling pattern. For the grid transfer operations, these formulas are like those
we have already discussed. Restriction is by simple averaging of associated cells. For
interpolation we have had best results with a higher-order method, a biquadratic
formula using coarse cells from the appropriate decoupled grid component. Unlike
the single-grid case, effective position shifts like those shown in Figure 1 are no longer
valid, so we use the actual positions of cell centers to derive the interpolation stencil.

Difference formulas across the grid interfaces are more problematic. Whereas
restriction and interpolation schemes affect only the convergence rate of the iteration,
the difference stencils determine the actual converged solution. Stencil outlines for
both fine and coarse points near the interface are shown in Figure 2. In both cases we
use quadratic interpolation to obtain third-order accurate values on the opposite side
of the interface, then a three-point difference formula to give a second-order accurate
derivative at the desired point. Composition of second-order derivatives in D and
G gives a Laplacian approximation that is first-order accurate along the interface,
sufficient for global second-order accuracy of the projected velocity field.

These derivative stencils are used for computing residuals and for obtaining di-
vergence and gradient in the projection formula. Note that D is no longer equal to
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32 64 128 256
354026 8 [ 0.907518 (3.01) 7| 0.228655 (3.97) 7 | 0.0573795 (3.98) 7
416279 8 | 1.14104 (3.65) 7 | 0.293781 (3.88) 7 | 0.074023 (3.97) 7
9.84036 13 | 4.7626 (2.07) 9 | 2.14014 (2.23) 11 | 0.876724 (2.44) 18
1.20866 19 | 0.378418 (3.43) 16 | 0.097241 (3.89) 15 | 0.024058 (4.04) 14
7.26845 19 | 1.84558 (3.94) 20 | 0.476259 (3.88) 21 | 0.123554 (3.85) 22
0.802074 | 0.196431 (408) | 0.0487401 (4.03) | 0.0121474 (4.01)

[ L R T R R

Table 1: Convergence results for both variable-density and adaptive implementations
of the decoupled projection. For each case the problem was run with square base
grids of four dlﬁ‘erent sizes—32x32 through 256x256—t0 a final residual less than
100 The numbers given for each run are the final oo-norm error in the velocity
field (times 1000), the factor of improvement from the next coarser grid, and the

number of multigrid cycles required. For the last run (adaptive code), 2-norm error
data is also given. A description of each problem is given in the text.

—GT. This means that the adaptive projection is no longer quite orthogonal, and we
have to add a slight correction to DV to make the system solvable. The alternative,
however, would be to use less accurate stencils for either D or G at the interface,

- which would seriously degrade the performance of the algorithm.

NUMERICAL EXAMPLES

Table 1 summarizes the convergence behavior of the projection for five different
problems. The domain is the unit square with no flow through the boundaries. In
each case we start mth the dlvergence-free vector field

u = (+0.2)(z + 1)(7r(y + 1) cosmy + sﬁi 'Vrryj’éfﬁ I,
v = (-0.2)(y+ 1)(n(z+ 1) cosmz + sinnz) siny, (17)

add to it 1/p times the gradient of

¢=:7?1—cos((x+x))0057fy, | (18),,,,

then apply the prOJectlon This should strip off the gradxent portxon of each field and 7

return the divergence-free portion (17). The five cases considered are: (1) constant -

density, (2) mild density variation—p = 1 + 100sin® 7z sin® 7y, (3) extreme density
variation—p = 1 + 100000 sin® 7z sin® y, (4) discontinuous jump in density—p = 1
inside a radius 0.1 circle centered at (0.4, 0.4), p = 10001 elsewhere, (5) constant
density adaptive—the square from 0.25 to 0.75 in z and y is refined by a factor of
four from the base grid.

Cases (1) and (2) are smooth, so the multigrid scheme converges rapidly and gives
unambiguous second-order convergence. Cases (3) and (4) are more difficult, but the

Lo neme



scheme is still clearly better than first order. In the adaptive case (5) the errors are
concentrated along the coarse-fine grid interface, where the discretization of DG is
only first-order accurate. Convergence is still second-order in the 2-norm, but may
be slightly degraded in the oo-norm. Note that this example is not representative
of the intended use of the adaptive method. In normal operation the interfaces are
well-separated from complicated regions of the flow field, which dominate the error
behavior of the scheme. Slower convergence for the adaptive scheme appears to be
due the mismatch between coarse grid stencils and the residuals computed at the
interface. Relaxation at interfaces and/or closer integration of the multigrid and
multilevel iterations might yield a faster algorithm.

Quantitative analysis of the the flow solver as a whole is beyond the scope of this
paper. Our remaining two examples are intended mainly as illustrations, to demon-
strate the power of the algorithm for modeling unsteady flow fields with finely detailed
structure. In Figure 3 we show an image from a 3D variable-density calculation set
up and run by Dan Marcus. A bubble of helium was initially started at rest near
the bottom of the domain. The ambient fluid is air, giving a density ratio of 7.25.
The calculation was performed on a 64x64x128 grid occupying one quarter of the
volume shown—this was filled out to 1282 for rendering by reflection through the two
symmetry planes. At the time of the picture the bubble has risen and developed into
a torus, with more complicated flow patterns visible in the outer mixed region. We
do not claim that this calculation accurately models a turbulent flow field. However,
a more detailed examination of transition to turbulence, using a projection method
similar to the one presented here, can be found in [6].

Figure 4 illustrates the adaptive algorithm. A 64x64 base grid is refined twice,
by a factor of four each time, so the finest level has resolution equivalent to a single
1024x1024 grid. Every 10 time steps grids are re-allocated according to a procedure
based on second derivatives of the velocity field. In the initial conditions, four patches
of vorticity with radii 0.025 are placed in the unit square at (0.5, 0.5), (0.5, 0.575),
and the two 120° rotations of this position. Each patch has uniform vorticity except
for a linear ramp 3/256 wide down to zero vorticity at the edge—the radius of the
patch is the distance from the center to the halfway point of the ramp. The initial
velocity field is obtained by solving for the stream function associated with the given
vorticity field. This is identical to the projection calculation, except that the stream
function satisfies a Dirichlet boundary condition. Note how well the Godunov advec-
tion scheme preserves fine details of the flow field, even in the highly stretched regions
near the vortex core.

CONCLUSIONS AND FUTURE PLANS

Centered difference stencils are the simplest choice for implementing the discrete
divergence and gradient, subject to the requirement that velocity components must
all be defined at the same points. The decoupled projection stencils arising from this
choice require various contortions in the solution algorithm, which raises doubts as to
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Figure 3: Volume-rendering of a helium bubble rising through air. The central part
of the bubble has taken on a simple toroidal shape, but the outlying mixed regions

show more complicated flow patterns.
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Figure 4: Adaptive simulation of a four-way vortex merger problem, showing contours
of vorticity.

the practical utility of the results thus obtained. Despite the unusual behavior of the
projection, however, the difficulties have been overcome and the method successfully
models a variety of incompressible flow problems.

It seems likely that some flow problems will not be suitable for this type of algo-
rithm. Though the projection does not directly cause high-wavenumber instabilities,
neither does it do anything to suppress them when they are excited by other parts of
a flow solver. Lai, for example, reports having difficulty using this type of projection
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for certain combustion problems [14]. We have seen stability problems ourselves in an
adaptive version of the algorithm of [4], where a staggered-mesh projection is applied
to the edge velocities computed in the Godunov predictor.

While we believe the decoupled method is a worthy contender, these difficulties
beg for comparative studies with other types of projections. One alternative is the
regularization given by Strikwerda [16]. Though coupled, however, the stencils derived
in this work are both large and asymmetrical. A newer approach is that of Almgren,
Bell and Szymczak in [2], which is coupled and symmetrical but not quite idempotent.
We have recently completed an adaptive version of this projection, early results from
which seem quite promising.
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SUMMARY

We present ideas on how to use wavelets in the solution of boundary value ordinary differential
equations. Rather than using classical wavelets, we adapt their construction so that they become
(bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a
Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can
construct an O(N) algorithm for various constant and variable coefficient operators.

INTRODUCTION

The purpose of this paper is to use wavelets in the solution of certain linear ordinary differential
equations of the form

Lu(z) = f(z) for z€0,1], where L = gl:aj(z) D’

and with appropriate boundary conditions on u(z) for z = 0, 1.

Currently there exist two major solution techniques. First, if the coefficients a;(z) of the
operator are constants, then the Fourier transform is well suited for solving these equations. The
underlying reason is that the complex exponentials are eigenfunctions of a constant coefficient
operator and they form an orthogonal system. As a result the operator becomes diagonal in the

*The first author is partially supported by DARPA Grant AFOSR 89-0455 and ONR Grant N00014-90-J-1343, the
second author is Research Assistant of the National Fund of Scientific Research Belgium and partially supported by
ONR Grant N00014-90-J-1343.
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Fourier basis and can thus trivially be inverted. The numerical algorithm then boils down to
calculating the discrete Fourier transform of the right hand side, dividing each coefficient by its
corresponding entry in a diagonal matrix and finally taking the inverse Fourier transform to obtain
the solution. This can be done quickly using the fast Fourier transform which has a complexity of
Nlog N, where N is the number of unknowns in the discretization.

If the coefficients are not constant one typically uses finite element or finite difference methods to
discretize the problem. We focus here on finite element methods. Define the opcrafor inncr product
associated with an operator L by

{u,v)) = (Lu,v).

A weak solution u can be found with a Petrov-Galerkin method, i.e. consider two spaces S and &
and look for a solution u € § such that

{(u,v)) = (fiv),

for all v in 8*. If S and S~ are finite dimensional spaces with the same dimension, this leads to a
linear system of equations. The matrix of this system, also referred to as the sf/(ffncss matrir, has as
elements the operator inner products of the basis functions of S and §.

Traditionally one uses very local finite elements such that the stiffness matrix has a banded
structure. The linear system can then be solved efficiently with an iterative method. These classical
finite elements however have the disadvantage that the stiffness matrix becomes ill conditioned as
the problem size grows. This slows down the convergence speed of the iterative algorithm
dramatically. It is well understood by now that this can be solved with multiresolution techniques
such as multigrid or hierarchical basis functions [1, 2]. Multiresolution finite element bases can
provide preconditioners which result in a uniformly bounded condition number, see e.g. 3, 4, 5].
The convergence of the linear system is then independent of the problem size.

The research presented here is motived by the question of how good wavelets are for the solution
of ordinary differential equations. We know that there are basically four main properties of
wavelets; namely, they provide a multiresolution basis for a wide variety of function spaces, they are
local in both space and frequency, they satisfy (bi)orthogonality conditions and fast transform
algorithms are available. Because of these properties, wavelets have already proven to be a valuable
substitute for the Fourier transform in many applications.

One possible idea, as proposed by several researchers, is to use wavelets as basis functions in a
Galerkin method. This has proven to work and results in a linear system that is sparse because of
the compact support of the wavelets, and that, after preconditioning, has a condition number
independent of problem size because of the multiresolution structure. However, in this setting the
wavelets do not provide significantly better results than more general multiresolution techniques
(cfr. supra) and in fact one of their major properties, namely their (bi)orthogonality, is not
exploited at all.

Three questions are addressed in this research. The first, how can one make use of the
(bi)orthogonality property of the wavelets? The second, which operators can be diagonalized by
wavelets? The last, are fast algorithms available and what is their complexity?
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PRELIMINARIES

Notation and definitions

Much of the notation will be presented as we go along. Here we just note that the inner product
of two square integrable functions f, g € L*(IR) is defined by

+x

(f,9) = | _ f(z) g(x) dz,

and that the Fourier transform of a function f is defined as
£ e —twx
fw) = [ f@)eda.
We say that a function w is an L-spline if
L'Lw =0 and wel™?
where L~ is the adjoint of L, a linear differential operator of order m. This definition leads to the
classical piecewise polynomial splines in case L = D™.

Multiresolution analysis

We give a brief review of wavelets and multiresolution analysis. For more information one can
consult [6, 7, 8, 9]. A multiresolution analysis of L*(IR) is defined as a set of closed subspaces Vi,
with j € ZZ, that exhibit the following properties:

1. V) C V7'+17

2. v(z) € V; & v(2z) € Vjy1 and v(z) € Vi & v(z + 1) € W,

+x +o0 I
3. |J V;is dense in L*(JR) and [ V; = {0},
= j=—n
4. A scaling function ¢(x) € V, exists such that the set of functions {¢;ulz) |l € Z}, withi
¢;i(x) = V21 (2 — 1), is a Riesz basis of V. :

As a result there is a sequence {hx | k € ZZ} such that the scaling function satisfies a refinement
equation

B(z) = 23" h (23 — k). (1)
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Define W; now as a complementary space of V; in V;,;, such that V., = V; @ W, (@ stands for

direct sum) and, consequently,
@W L*(IR).

Note that this definition of W; as a complementary space is non unique.

A function +(x) is a warclct if the set of functions {)(z — ) | | € ZZ} is a Riesz basis of W,. The
set of wavelet functions {1;,(z) | {,j € ZZ} is then a Riesz basis of L2(IR). Since the wavelet is an
element of Vj, it too satisfies a refinement relation,

¥(z) = 2> gr (22 — k). ' (2)

There are dual functions ¢;,(z) = V2é(2z — I) and ¥, ,(z) = VI (2z — l) that exist so that the
projection operators P; and (), onto V; and W}, respectively, are given by

Pf(:l?) Z(f ¢Jl>¢]l(x) and Q_’l Z(ﬂ%t)‘/};, (.’L')

The basis functions and dual functions are biorthogonal,

(b0 b50) = v and (W, P50) = 658 4. (3)
If the basis functions are orthogonal, tney coincide with the dual functions and the projections are
orthogonal. = _

The dual scahng functlon and wavelet satlsfy 7 -
$(@) = 23 kb2 k),  P(z) = 23 G $(2z — k), (4)
k k

and _

$(2z - k) th 2t¢($—1)+29k aP(z —1). (5)

Takmg the Fourlerrtransform of the reﬁnement equations (1) and (2) yields
pw) = h(w/2) pw/2) with h(w) = 3 hee ™
k

and

Pw) = gw/2)P(w/2), with glw) = ; gre™.

Here h(w) and g(w) are 27-periodic functions that correspond to discrete filters. Similar definitions
and equations hold for the dual functions. A necessary condition for biorthogonality is then

Ywe IR : m{w)mi(w) = 1,
where

m) = [ M) Met )|

and similarly for 7m{w). The existence of the dual filters is guaranteed by the following lemma:
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Lemma 1 7he space gencralcd by the set of functions {Wia |t e ZZ} complements Vi in Vi if and
only if 8{w) = det m{w) docs not ranish.

The following statements are now equivalent :
e The dual wavelet has M vanishing moments.

e Any polynomial with degree less than M can be written as a linear combination of the
functions ¢;;(x) with | € ZZ.

e If f € CY, then the error of the approximation ||f — P, f]| decays as O(h™) with h = 277

These statements are also equivalent with the Strang-Fix condition [10].
The fast wavelet transform

Since V; is equal to V;_; @ W,_,, a function v; € V; can be written uniquely as the sum of a
function v;_; € V;_; and a function wj_1 € Wj_q:

vi(z) = ;”j,k‘ﬁj,k(x) = v;-1(x) + w;_1(x)

= Z vi1a @i-11(z) + E Mi—11%5-1,(x).
1 !

There is a one-to-one relationship between the coefficients in the different representations. The
decomposition formulae can be found using (4):

Vi1 = \/izitk—zt Vjk, and Hj-11 = ﬁzgk—zt Vjk-
k k

The reconstruction step involves calculating the v;; from the v;_1; and the u; ;. Using (5) we have

Vik=V2 S kv + V2 > Groa o1y
1 !

When applied recursively, these formulae define a transformation, the fast wavelet transform [8, 11].
The decomposition step consists of applying a low-pass (k) and a band-pass (g) filter followed by
downsampling (i.e. retaining only the even index samples). The reconstruction consists of
upsampling (i.e. adding a zero between every two samples) followed by filtering and addition. Note
that the filter coefficients of the fast wavelet transform are given by the coefficients of the
refinement equations.

There are many constructions of wavelets. Here we shall only consider compactly supported
wavelets as in [12, 13]. In this case the filters used in the fast wavelet transform are finite impulse
response filters and a fast accurate implementation is assured.
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General idea

We shall assume that L is self-adjoint and positive definite and, in particular, we can write
L=V,

where V* is the adjoint of V. We call V' the squarc root operator of L. Suppose that {¥;,} and
{3}, for an appropriate range of indices, are bases for S and S&™ respectively. The entries of the
stiffness matrix are then given by

((qu,l,w;l,ll >> = (L‘Ilj’l,\I’;/’lr ) - (V‘I’jJ,V‘II;I,lI ) .

Now, the idea is to let )
\I’j,[ = V_l't,b]',; and \Il;,l = V_l’(,bj’l ,

where 1 and 1 are the wavelets of a classical multiresolution analysis. Because of the
biorthogonality (3), the stiffness matrix becomes a diagonal matrix which can trivially be inverted.
This avoids the use of an iterative algorithm. We will call the ¥ and ¥~ functions the operator
wavelets and the 1 functions the original wavelets. The operator wavelets are biorthogonal with
respect to the operator inner product, a property we refer to as operator biorthogonal.

This idea can be powerful, but there are a few problems. First of all one has to check whether
the operator wavelets still provide an multiresolution analysis where the successive approximations
to a general function converge sufficiently fast (cfr the Strang-Fix condition). Secondly one has to
construct a fast wavelet transform for this operator multiresolution analysis. We want operator
wavelets to be compactly supported and to be able to construct compactly supported operator
scaling functions ®;;. We will see that the latter is not as simple as just applying V! to the
original scaling functions.

The analysis is relatively straightforward for simple constant coefficient operators such as the
Laplace and polyharmonic operator. For more general constant coefficient operators, we will show
that one needs to modify the construction of the original wavelets for the operator wavelets to
satisfy all the desired properties. We will discuss the Helmholz operator as a typical example. At
the end of the paper we shall consider a variable coefficient operator.

A similar idea was described in [14, 15]. However there only the operator wavelets of different
levels are operator orthogonal and not the ones from the same level. As a result, one does not
obtain a full diagonalization, but rather a decoupling of equations corresponding to different levels.

Our idea is different from the technique presented in [16]. There wavelets are used to efficiently
compute the inverse of the matrix that comes from a finite difference discretization. It is also shown
that the wavelets provide a diagonal preconditioner which yields uniformly bounded condition
numbers.

In [17, 18] antiderivates of wavelets are used in a Galerkin method. This parallels our
construction in the case of the Laplace or polyharmonic operator.
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LAPLACE OPERATOR

The one dimensional Laplace operator and its square root are
L =-D* and V = D.

The associated operator inner product is therefore ({u,v)) = (v/,v'). Since the action of V! is
simply taking the antiderivative here, we define the operator wavelets as

V(z) = /_;;b(t)dt, and U*(z) = /Zoqz(t)dt.

The operator wavelets are compactly supported because the integral of the original wavelets has to
vanish. Also translation and dilation invariance is preserved, so we define

V;u(z) = ¥(Pz-1) and ¥} (z) = ¥ (27z —1).
It is then easy to see that
(( ‘II;’“ ‘Ilj',l' )) = 2'1 6_7'._]‘1 51_1’ for j,j,, l, l’ S Z.

This means that the stiffness matrix is diagonal with powers of 2 on its diagonal.

We now need to find an operator scaling function ®. The antiderivative of the original scaling
function is not compactly supported and hence not suited. We instead construct the operator
scaling function ® by taking the convolution of the original scaling function with the indicator
function on [0, 1],

® = &*Xxp,1)
and similarly for the dual functions. We will show that these functions indeed generate a
multiresolution analysis. To this end define

V; = closspan {®;; |l € ZZ} and W, = closspan {¥;, |l € ZZ}.

We show that the V; spaces are nested and that W; complements V; in V..
In the Fourier domain we have

b) = 12730 and () = Ldw)

w

A simple calculation shows that the operator scaling function satisfies a refinement equation

1 4+e
2

d(w) = d(w/2) Hw/2) with H(w) =

h{w).
Consequently, the V; spaces are nested. If we can find a function G such that

VW) = $(w/2) G(w/2),
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then this implies that W; is a subset of V.. It is easy to see that this holds with

1

Glw) = ﬁf?e_—i—“’—)g(w)'

This function is well defined because g(0) = 0.
The space W; complements V; in Vj; if

_ H(w) H{w+m)
Alw) = det G(w) G(:+7r)

does not vanish, see lemma 1. In fact, we readily see that A(w) = 6(w)/4, and this cannot vanish
since ¢ and v generate a multiresolution analysis. The construction of the dual functions ¢~ and
" from ¢ and % is competely similar. The coefficients of the trigonometric functions H, H", G and
G~ now define a fast wavelet transform.

Note that there is no reason why the operator scaling functions should be operator biorthogonal
and in fact one can prove that this never happens. Note also that if true, this property would make
the use of wavelets superfluous.

Algorithm

We will describe the algorithm in the case of periodic boundary conditions. This implies that the
basis functions on the interval [0, 1] are just the periodization of the basis functions on the real line.
Let S = V™ and consider the basis {®,; | 0< ! < 2*}. Define vectors b and z such that

r-1
bi = (f:Q:;,l>» and u = Ewl(pn,l-
=0

The Galerkin method with this basis then yields a system
Az = b with Ak,l = ((q)n,hén,k)) .

As we mentioned earlier, the matrix A cannot be diagonal. Also its condition number grows as
O(2?"). Consider now the decomposition

Vo = iaeaWo®--- oWy,

and the corresponding wavelet basis. The space V}; has dimension one and contains constant
functions. We now switch to a one index notation such that the sets

{1,9;,|0<5<n 0<1<?} and {¥;|0<k<2"}

coincide. Define the vectors b and # such that
_ a1
bl: (f,‘I’I) and u = Zfi‘[‘lfl.
=0

We know that there exists matrices T and 7™ such that

b=T0b and z =Tz
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The matrix T~ corresponds to the fast wavelet transform decomposition with filters H” and G™ and
T corresponds to reconstruction with filters H and G. The complexity of the matrix vector
multiplication is O(N), N = 2™. In the wavelet basis the system becomes

Az = b with A = T*AT and Axy = (Vnp, ¥ni))-
Since A is diagonal, it can be trivially inverted and the solution is then given by
z=TAT"b.

This means that one has to calculate the wavelet decomposition of the right hand side, divide each
coefficient by its corresponding diagonal element and reconstruct to find the solution. The
complexity is O(N).

The constant basis function of V; has a zero as diagonal element and its coefficient is thus
undetermined. Note that this leads to an inconsistency if the integral of f does not vanish.

Boundary conditions

Our general idea to deal with boundary conditions is to let the operator wavelets satisfy the
homogeneous boundary conditions and to let the component in the V; space satisfy the imposed
boundary conditions. This requires the use of special boundary wavelets as described in [19]. With
only a slight change of basis one can then incorporate Dirichlet, Neumann, mixed and periodic
boundary conditions. The details of this construction go beyond the scope of this paper. We will
describe the construction in some specific cases. '

Example

In this section we shall take a look at a simple example, namely the basis we get by starting
from the Haar multiresolution analysis, where

¢ = xpy and Y(z) = ¢(2z) — $(2z - 1).
Define the hat function as
A = Xq*Xp1s suchthat & = A and ¥(z) = A(2z).

The original wavelets are orthogonal and as a consequence the basis functions and dual functions
coincide. ,

The operator scaling functions can represent linears which means they satisfy the Stang-Fix
condition with M = 2 and the convergence is of order h2. One can prove that higher order wavelets
with more vanishing moments (M) will in general not yield faster convergence because the solution
u is not smooth enough. The underlying reason is that the solution u belongs to the Sobolev space
W,. One can get faster convergence only by imposing extra regularity conditions on the right hand
side. So in a way this basis seems to be the most natural one to work with. Note that these
piecewise linear basis functions are local solutions of the homogeneous equation such that the
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Figure 1: Basis for Dirichlet problem. Figure 2: Basis for Neumann problem.

operator scaling functions and wavelets are V-splines. This basis also coincides with Yserentant's
hierarchical basis.

Figure 1 shows the basis functions in the case of Dirichlet boundary conditions and n = 3. The
left part are the bases for the spaces V; up to V; while the right part are the bases for Wy up to W5,
which provide the diagonalization. The coefficients of the two functions in the V; space are
determined by the boundary conditions. The fast wavelet transform differs from the periodic
algorithm here in the sense that different coeflicients are used for the wavelets at the boundary.
Note the “half hat” functions here. The basis in case of the Neumann problem is shown in figure 2.
The boundary conditions are handled by the two functions in the V] space. Again the coefficient of
the constant is undetermined. The algorithm leads to an inconsistency in case the integral of f is
not equal to /(1) — u/(0). Note that in both cases the operator wavelets satisfy the homogeneous
boundary conditions.

MORE GENERAL CONSTANT COEFFICIENT OPERATORS

The polyharmonic operator

The polyharmonic equation is defined as

™ = §f
and the square root operator is now V = D™. The operator scaling function ® is now m times the
convolution of the original scaling function ¢ with the box function and the operator wavelet ¥ is
m times the antiderivative of the original wavelet 1. In order to get a compactly supported wavelet,
the original wavelet now needs to have at least m vanishing moments, a property which can be
satisfied by all known wavelet families. The construction and algorithm are then completely similar
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Figure 3: The refinement relation for the piecewise exponentials.

to the case of the Laplace operator.
The Helmholz operator

The general definition of the one dimensional Helmholz operator is:
L=-D*+k* suchthat V=D +k.

Here we shall assume that k£ = 1 which can always be obtained from a simple transformation.
Observe that V = D + I = e *De® and thus V™! = e *D~! e®. One easily verifies that applying
V! to a wavelet will not necessarily yield a compactly supported function since e®; in general
does not have a vanishing integral. Therefore we let ¥;, = V~'e™%¢;, = e *D ¢, ;. If ¢;, has a
vanishing integral, then ¥;; is compactly supported.

In order to diagonalize the stiffness matrix, the original wavelets now need to be orthogonal with

—— -

+ 9 -
(W) = [ e hyu(e) yp (o) da

—C

Finding such wavelets is a hard problem to solve in general. Inspired by the Haar basis, we
construct a solution where the orthogonality of the wavelets on each level immediately follows from
their disjoint support, by letting supp;; = [277,277(l + 1)]. To get orthogonality between the
different levels, we need that V; is orthogonal to W; for j' > j or

+x ~
[ e @) da(@de = 0 for 35
We now let the scaling function coincide with e2* on the support of the finer scale wavelets,
bis = €% x5,
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where y; is the indicator function on the interval [2771,277(1 + 1)], normalized such that the
integral of the scaling functions is a constant. As in the Haar case we choose the wavelets as

Yii = dir1,2 — Pjr1,2041;

so that they have a vanishing integral. The orthogonality between levels now follows from the fact
that the scaling functions coincide with e** on the support of the finer scale wavelets, and from the
vanishing integral of the wavelets

400 _ox - +oo ~ + L
/_Oo e ¢ju(x) Yy (z) dz = [% Xji(@) Yyp(@)de = | dyu(z)de =0

One can see that the operator wavelets are now piecewise hyperbolic functions (piecewise
combinations of e* and e~%). The scaling functions are chosen as

®;; = e D (¢j1 — dju41) sothat Vj; = Pjiq 0

With the right normalization, one gets

( sinh(z — 1277) ;i ;i
Soh(37) for z € [1277,(1+1)277]
_ ) sinh((l+2)277 -z » »
®ju(x) = ((Sinh(;_j) ) for z€ [(1+1)277, (1 +2)277]
0 elsewhere.

\

The operator scaling functions on one level are translates of each other but the ones on different
levels are no longer dilates of each other. They are supported on exactly the same sets as the ones in
figure 1 and they roughly look similar. The operator scaling functions satisfy a refinement relation

2
@, = Y Hi @ik,
k=0
with 7
Hi = H} = sinh(2777")/sinh(277) and H] = L
Figure 3 shows the refinement relation for the scaling functions. The 3 finer scale functions are not
the dilates of the coarse scale one but they still add up to it.

The Helmholz operator in this basis of hyperbolic wavelets again is diagonal and the algorithm is
completely similar to the Laplace case. The only difference in implementation is that the filter
coefficients HJ used in the fast wavelet transform now depend on the level.

Note that these functions again are V-splines and, in a way, are the most natural to work with.

Also note that
lim ¢;0(277z) = A(z).
F—x

Despite the fact that the Strang-Fix conditions are not satisfied, one can prove that the
convergence is still of order hZ.

So we can conclude that a wavelet transform can diagonalize constant coefficient operators
similar to the Fourier transform. The resulting algorithm is a little faster (O(V) instead of
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O(Nlog N)). This gain in speed is a consequence of the subsampling of the coarser levels in the
wavelet transform (the ones that correspond to the low frequency components of the solution)
which is not present in the Fourier transform. Also boundary conditions are taken care of more
easily than in the Fourier case.

VARIABLE COEFFICIENTS

Naturally, the next question is how to use wavelets for variable coefficient operators. The
underlying reason why wavelets can diagonalize constant coefficient operators is their locality in the
frequency domain. We want to understand if we can exploit the localization in space to diagonalize
variable coefficient operators. The answer is (perhaps quite surprisingly) yes and this really justifies
the use of wavelets for differential equations. No other technique (to our knowledge) has been able
to accomplish this.

We take a closer look at the following operator

L = —Dpz(x)D,

where p is sufficiently smooth and positive. The square root is now V = p D and V-1=D"11/p.
The rest of the analysis is very similar to the case of the Helmholz operator. Applying V-1 directly
to a wavelet does not yield a compactly supported function. We therefore take ¥;; = V-1lpy;,
which implies that the wavelets need to be (bi)orthogonal with respect to a weighted inner product
with p? as weight function. We use the same trick as for the Helmholz equation to construct such
functions. This means that we let the scaling functions ¢, coincide with 1/ p? on the dyadic
interval [2771,279(l + 1)] and normalize them such that they have a constant integral. We then take
the wavelets ;; to be equal to ¢;412 — ¢;41,2141 S0 they have a vanishing integral and the operator
wavelets are compactly supported. The operator wavelets are now piecewise functions that locally
look like AP + B where P is the antiderivative of 1/p? and again are V-splines. Their support also
coincides with the support of the functions of figure 1, and since p is smooth they will converge to
hat functions as the level goes to infinity. The operator wavelets are neither dilates nor translates of
one function, since their behavior locally depends on p. This is not a problem because they still
generate a multiresolution analysis and satisfy refinement relations. The coefficients in the fast
wavelet transform are now different everywhere and they depend in a very simple way on the Haar
wavelet transform of 1/p?. The entries of the diagonal stiffness matrix can be calculated from the
wavelet transform of 1/p?. The algorithm is completely similar to previous cases and is of order N.
Boundary conditions are as easy to handle as in the case of the Laplace operator. Note that the
operator scaling functions do not satisfy the Strang-Fix conditions. It is however again possible to
prove that the method has a convergence of order h®. As mentioned earlier, higher convergence
orders can not be obtained in general. o

NUMERICAL EXAMPLE

We solve the equation
—De” Du(z) = € (sin(z)(3x2 ~2) + cos{z)(2x — 2x3)) /%, with u(0) =1 and u(l)=sin(1),
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L. error
1.22e-02
3.37e-03
8.66e-04
2.18e-04
5.45e-05
1.36e-05
3.41e-06
8.52e-07
2.13e-07

W00~ O Ok o e~

such that the exact solution is given by u(z) = sin{z)/z. The L. error of the numerically
computed solution is a function of the number of levels (I) shown in the above table . Each time
the number of levels is increased the error is divided almost exactly by a factor of 4, which agrees
with the O(h?) convergence.

CONCLUSION

In this paper we showed how wavelets can be adapted to be useful in the solution of differential
equations. Like the Fourier transform, wavelets can diagonalize constant coefficient operators. The
resulting algorithm is slightly faster. The main result however is that even non-constant coefficient
operators can be diagonalized with the right choice of basis which evidently yields a much faster
algorithm than more classical iterative methods.

This technique can also be applied to the solution of implicit time stepping discretizations of
equations of the form du/8t = Lu + f even when L is non-linear. Future research includes the
study of non self adjoint operators where a splitting L = V'V~ is needed and the study of the
possible generalization of these ideas to partial differential equations.
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SUMMARY

This study is devoted to a comparative analysis of three "Adaptive ZOOM"
(ZOom  Overlapping  Multi-level) methods based on  similar  concepts of
hierarchical multigrid local refinement : L.D.C. (Local Defect Correction),
F.A.C. (Fast Adaptive Composite), and FIC. (Flux Interface Correction),
which we proposed recently. These methods are tested on two examples of a
bidimensional  elliptic =~ problem. We compare, for V-cycle procedures, the
asymptotic evolution of the global error. evaluated by discrete norms, the
corresponding local errors, and the convergence rates of these algorithms.

INTRODUCTION

The need for local resolution in physical models occurs frequently in
practice.  Special local features of the operator coefficients, source terms,
and boundary conditions can demand resolution in restricted regions of the
domain that is much finer than the required global resolution. The multigrid
methods with  local mesh refinement provide one solution method to achieve

efficient local resolution by solving problems on various locally nested
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grids, and by 7usirrilg these grids as a basis for fast solution and correction on
the global basic grid of the calculation domain. Different techniques have
been proposed in the literature, such as the pioneering works [1,2,3,4,5].

Therefore, the concept of "Computational Adaptive Zoom" in the context of
a "Graphical and Computational Architecture” has been introduced in the field
of numerical simulation in order to take the best advantage of the new
capabilities of high performance computer architectures [6]. It can be viewed
as a generation made automatically (i.e. in an adaptive way) or not, of some
multilevel hierarchical local nested zoom grids (ZG), overlapped all over the
global basic grid (BG). These grids may move all over the entire computation
domain Q during the solution phase. This concept is supposed to allow both
local refinement and global correction of the basic grid solution by a
successive transfer of information between the connected grids (BG) and (ZG).
So it is well adapted to a graphical vision of Zoom in terms of the creation
of local graphical windows where it is needed in the problem (strong
gradients,  discontinuities,  singularities,...), but in an  active  sense, i.e,
the basic grid solution is modified and improved as the computing is
performed. This has involved us in the creation of an original engineering
software package called "AQUILON", still currently in development [6].

In addition, this strategy offers other interests. The goal is to combine
the best features of both multigrid techniques and domain decomposition
methods (in the case of overlapping grids) to provide an acceleration of the
convergence rate and a good suitability for  implementation  on parallel
computers, thus reducing the ellapse time. Moreover, another advantage is the
possibilty to solve different differential problems on the grids (BG) and
(ZG), which allows us to optimize both the physical and the numerical model
This can be particularly interesting for the approach of solving problems by
"imbedding  inside fictitious  domains” associated  with  appropriate  “control
terms" for expressing the boundary conditions, as proposed in [6]. Tt is also
possible to adopt different kinds of discretization on each grid. Thereby, the
multigrid zoom - methods share with the domain decomposition techniques the
opportunity for obtaining precise solutions by combining solutions to problems
posed on physical subdomains, or, more generally, by combining solutions to
appropriately constructed continuous and discrete boundary value sub-problems.

From the numerical point of view, the strategy adopted enables us to work
only on structured and uniform meshes for each grid separately, on which a
moderate number of degrees of freedom is required. On each grid, a "simple and
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inexpensive” discretization is performed, leading to the same simple form of
sparse  pattern matrices (e.g. 2D  block-tridiagonal). We aim at avoiding
solving problems on unstructured or nonuniform composite meshes, which tends
to introduce inaccuracies in the discretization, slowness in the solvers, and
being surely more expensive in terms of implementation, data  structures
storage and CPU time. Our choice is expected to be relatively good in terms of
duality quality/cost of computation for a lot of cases of moderate complexity.

MULTIGRID ZOOM ALGORITHMS

Different ZOOM algorithms will be examined and compared. We consider
first the L.D.C. (Local Defect Correction) algorithm proposed by Hackbush [1];
we choose for the restriction operator a 2D bilinear interpolation one of type
"full weighting control volume". The second one belongs to the class of F.A.C.
(Fast Adaptive Composite Grid) methods from McCormick [5], for which the
analogy with the B.E.P.S. method [4] can be noticed. We use here the "delayed
correction" version of F.A.C. Only the third one, the F.IC. (Flux Interface
Correction)  algorithm that we proposed more recently [7], will be briefly
described hereafter.

All  these Multigrid Zoom Algorithms are based on the same general
principle : a successive transfer of information level by level, leading to
the global correction of the initial discrete solution on each grid, and thus
on the global basic grid (BG). The multilevel implementation is made in a
recursive way as in the usual multigrid techniques (V-Cycles, W-Cycles, etc .)
[1,3]. The resolution on each grid may be performed "exactly" or by using an
inexact solve (e.g. a few iterations of a smoothing procedure).

Notations and Definitions

Consider the following second order non-linear elliptic boundary value
problem defined on Q a bounded, open domain in R®, ford = 2 or 3 :

(P) { L(u) = div(p(u)) + G(u) =f(x) x € Q (D
well-posed boundary conditions on I' = 0Q symbolically called by (BC)

The equation (1) L(u) = f is so expressed by splitting the nonlinear
operator L(u) in the divergent part where @(u) has the physical meaning of the
flux density of the solution u= u(x) and the nonconservative one G = G(u). The
relation between the solution u and the flux ¢ can take the general vector
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form @) = F(u) in many systems of conservation laws, but applications will
concern an advection-diffusion equation or a Navier-Stokes problem. For the
experiments here, (P) is a diffusion problem and we have ¢(u) = -c.gradu .

In order not to have too many formal requirements and restrictions, we
assume  explicitly only that this equation (1) has at least one isolated
solution u in the space L%Q). All other assumptions are implicitly contained
in the following considerations.

The Dbasic notations will be those classically used in the multigrid
framework [1]. We denote by ¢ the current index of the grid level (0< ¢ < ),
¢ = 0 is the level of the global basic grid (BG) which discretizes the entire
calculation domain Q, and ¢ = ¢ #0 is the level of the most nested and finest
zoom grid (ZG). Each grid of level ¢ can be characterized by :

| | n [ | |
- the open domain QB = {.}
|
T ¢ ¢ - the boundary I', = {.} on which can be
m ® ® » defined the unit outside normal vector n,
- the closure Qe = Qe U Fe
| L ® |
- the mesh size hg

Each grid of level ¢ is divided into a set of control volumes V_

associated to the nodes x € !'Zg . We denote by T the interface between two

2,e+1
successive grids of level ¢ and £+1 and we have V¢, Q2 N Q% . The

1 = Ny / 2, p € N. The following

er and K£=I'I£+1 er.

successive mesh sizes will be taken as h

notations will also be used : Ag = Qe +1

The transfer operators between the grids ¢ and &+1 will be called,

ﬁ +1 for the restriction operator and by Pﬁﬂ for the

prolongation operator. For all three algorithms, we have chosen Pﬁﬂ as :

respectively, by R

241
Py iy py 0y — T o+l

which is a monodimensional linear interpolation operator defined on the

\ T N

£+1

interface of the grids ¢ and &+1. Each value Ug,p 2t 2 node y € 1"“1\(1““10 N
on the interface is obtained by a linear interpolation of the values u, at the
two neighbour nodes x et x’ belonging to (Fe 141 O !'Ie ), and thus verifying

ue_l_l(y) = ue(x) ify=x.
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If we denote by L g Yy = fe the discretized equation of (1) on the grid of

level ¢, we can define the following discrete boundary value problems on !'Ze :
L0u0=f0:inQO Lz“e=fz Pin QE
(7’0) (.‘Pe) on FE NT : (BC) &0

on " : (BC) ) _pt
0 on 1"8 \ (I'e NT): u, = PE—I U, (2)

We denote by ulz the discrete solution obtained on the grid HZ at the k-th

iteration of the zoom algorithm, and elz = uz - ulz the associated discrete
error, where uz is the natural restriction of the exact solution u® of problem
(P) on HZ .

For 0 < ¢ < ¢, ¥(¢) will represent the number of iterations of the zoom
algorithm on the grid level ¢ in order to describe a whole cycle : if we have
Y(&=1 (respectively 7Y(£)=2), VO< ¢ <2*, then V-cycles (respectively W-cycles)
will be described. We have y(zt) = 1, and Y(0) is the total number of cycles
performed from the basic grid (BG) in order to obtain the so-called
convergence of the zoom algorithm. When ¢ =1 (i.e. for a two-grid algorithm),
only V-cycles are of course carried out. The term "No Zoom" will be used for
the resolution by "an exact solve" of problem (P) on the basic grid (BG) of
mesh size ho (£*=O, k=0). The term "Zoom" will be used to indicate that some
iterations of a multilevel zoom algorithm have been performed: ¢ %0, 1<k<y(0).

Description of The Multilevel F.I.C. Algorithm

The main idea of the two-grid FIC method for levels 2 and ¢+1 is to give
the opportunity to apply the local "flux residual” ~correction due to the whole
patcch level 2+1, at each node x e Kg on the grid level ¢ This is obtained
through the expression of the local flux balance (i.e. integration) of eq.(1)
over the volume Vx = Vx N Qﬂ+1’ between the grid levels ¢ on one hand, and
&+1 on the other hand.

Because of the consistency of the conservative discretization of the
fluxes by the finite volume method, which must be respected on each grid, the
outside normal fluxes of ¢(u) through an interface of two neighbour control
volumes are opposite. By giving more importance to the local "flux residual”,
that leads to consider for the correction step on the grid level ¢ the local
0,041 defined as the
either the stripe A'=

flux of the defect only at each node of a boundary zone 1
“flux correction interface”. We can choose for Ie L
{u Vx , X € axe = 1"“+1 N Qe}, or A (see further Figure) if we want the

a-

279



boundary OA to correspond to interfaces between control volumes on the grid
level ¢ : we will have V=V in the latter case. We define on the grid level
L BVX= I"x ] I“r, VX € IZ = Iz,£+1 N QP, , where I‘x= 8Vx N awe £ O, or
respectively, T’ = BVX N E)A!Z , (mes (I' ) = h 0 ).

’T,‘Bﬂ:ﬂ
Iy

Qe+1

~
Tz

We then propose the following restriction operator on the outside normal

flux through the “interface boundary” Vpoel = (T ,xe IE} :

2
Ro1 " Yoor1 N g1 — o1 N
1
]
R, (¢, ()N Wx) = ¢, ((u).n dy Vxel N @
1M+ +1 mes(l‘x) L_x +1 e+1 2.0+1 I

We can then define, as in [7], the local "flux residual" correction at

each node X € Ie = I£,£+1 N Qe on the grid level ¢ by :

r(@)) = LXMW { RE, (0,410 My, p) - 00y, } © @

The control parameter g(e,x), which has the dimension of a length, has
already been encountered in order to assign Neumann and Robin (or Fourier)
boundary conditions in the context of "imbedding inside a fictitious domain”
[6]. Its expression is given by :

’ mes (Vx)
etx) = ——m (5)
mes (I‘x)
A complete calculation, still not published, gives a complex expression

for m(¢,x)(u), which is the following one in the case under subject of G =0 :
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[J ¢(u).n dy - [J ¢(u).n dY]
r 7e+1 r

* r r e
ol@x)(u) = 1 + (6)

([ womar] (], wom e
I‘x 7 i+1 r

x )

We can then generate the successive iterates ulg by the multilevel FIC
algorithm implemented in a recursive way :

Initialization : compute ug‘
ug is obtained by resolution of problem (?,)

Tterations : compute the successive iterates ul;
for k =1 to y(0) do FIC(0)
Composite re-actualization : providing u;{(o) on (BG) by assigning

for ¢ =2 -1 to 0 by step of -1 : uZ(O)(x) =u’zyj_(1’)(x) ‘v’xeAe

Procedure FICU)

If ¢ = ¢" Then solve problem (P,*) Else

‘begin
* 1°' step - resolution on the grid level ¢+1 :
- solve problem (?£+1) providing U,
- for k =1 to y(¢+1) do FIC(¢+1)
* pnd Step - correction on the grid level ¢
- solve problem (?e) with fe = fe + sz re((p)
where rg((p) is computed by equations (3) (4)(5)(6)
and x; is the characteristic function of T, in!'l'2
 end L '
Remarks :
1) - In any case, in order to avoid the explicit calculation of ®(¢,x)(u)

by eq.(6), an economical solution is to use an approximate correction for FIC.
In that version, called FIC(®w), only the flux integrals on the interface Fx
will be evaluated by quadrature formulae (Simpson), and an average weighting
factor (& will be determined by a semi-empirical way for each grid level.
Besides, it can play the role of an average relaxation parameter for the
iterative zoom algorithm when w(f)=w, Veze .
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2) - In terms of domain decomposition, the two-grid FIC for levels ¢ and
e+1 can be regarded as a full overlapping iterative algorithm that splits the
whole composite problem in two Dirichlet/ Neumann boundary value sub-problems:

- the problem on the grid level &+1 with a Dirichlet boundary condition
on the interface Fe’ 2+1 (2),

- the problem on the level ¢ with a condition of relaxed transmission of

the flux on the interface through (4), which demands the flux

Yo,0+1
continuity at convergence. That condition can be considered as a Neumann

boundary condition on Yp 041 by the technique of "fictitious domain” in [6].
General Comments on the Three Algorithms

i) - The two-grid FAC method for levels ¢ and ¢&+1 can be regarded as an
iterative procedure to solve “exactly" the discrete composite problem coming
from an adequate discretization of problem () on the composite  grid Q&

defined by the association of the grids Qe and 0 Therefore, the principle

o+
is to apply a multigrid algorithm between the grids !'Ie and QE on one hand, and

between the grids Qﬂ and Qg 41 on ‘the cher [5,4]. There is therefore a

correction phase on both the grid levels ¢ and 2+1  with respect to the
discretization on the composite grid. In that sense, FAC can be viewed as an
"exact" solver for the composite problem. Because the composite grid stencils
agree with the coarse and fine grid stencils, respectively, outside and inside
the refinement region, and because the correction  equations are  solved
exactly, the composite grid residual is nonzero only at the interface.

ii) - Due to the attention needed for the nonuniform discretization of the
problem on the interface zone of the composite grid, FAC method can prove to
be a little difficult to implement in a more than two grids version.

iii) - On the contrary, LDC and FIC methods, which are easier implementing
in the multilevel case, are only approximate solvers : they don’t use a
composite grid and neglect the fine grid residual correction. The former
consists in the local correction of the solution defect inside Ae as the
latter involves a local flux residual correction through the interface Yo 041

iv) - Both FAC and FIC methods provide corrections by balancing fluxes
computed from both coarse and fine grids across the interface. They take the
best advantage of a conservative discretization of the equations, for example,

by a finite volume technique.



NUMERICAL APPLICATIONS

In that context, we propose to compare three types of multigrid zoom
algorithms on two examples of a linear elliptic problem (#) presenting,
respectively, a discontinuity of the operator coefficients for (P/) [8], and a
singularity of the exact solution for (#2) [1] :

L(u) = -div(o(x).gradu) + a(x) u = f(x) in Q=]0,1] X]0,1[ (1)
@ { o, a> € L¥(Q) et fel*(Q
well-posed boundary conditions on T'=0dQ symbolically calledby (BC)

These problems were already tested successfully on the FIC method in [7].
Problem (#I) is heterogeneous and defined by f=0, o=0, o0=100 inside a disk of
radius 0.1 and o=l outside (Fig.la). A solution computed on a very fine basic
mesh (5122) will be used as the reference solution u. Problem (P2) is defined

by =0, o=0, o=1 (Fig.1b); the exact solution is u = In(r) with r= v X2+ y2.
Numerical Implementation and Procedures

The discretization on each grid, independant of the geometry of the
problem, is made in a conservative way by a finite volume method on a uniform
Cartesian mesh. The classical five-point scheme is used providing a second
order  precision. The  resolution of the  linear  systems, which are
block-tridiagonal and symmetric positive definite, is performed by a fast and
efficient solver : a preconditionned conjugate gradient (PCG) method (CG-SSOR)
vectorized by a Red and Black numbering of unknowns. The results for two grids
are obtained by an '"exact" solve on each grid. The results for multilevel LDC
or FIC (2* 2 1) are given for an ‘'inexact" solve on each grid (including
Fig.5b), i.e., a fixed number itcg of iterations of PCG on each grid with :

itcg=2 for h_ = 1/8 itcg=4 for h_ = 1/16 itcg=8 for h = 1/32
0 0 0

The results are analyzed with different norms (L°°, L2, L-energy norm) of
the discrete error evaluated on the global basic grid (BG, ¢=0). We study the

asymptotic evolution of the relative error norms §g= Hegll / Hu(:ll (No Zoom) and
k

gg“’) = IICZ(O)II / Hu;H (after ¥(0) Zoom iterations) with e]; = u, - U; ,  which

allows us to estimate an asymptotic average rate T :
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* for ¢ = 1, as function of hl or p (for a fixed h)
1/m
2

g¥) (p=m)
Here m=3 and y(0)=2, see Tab.l, Tab.2, and Fig.2a, Fig.3, and Fig.4.

A
[

, with m=max{pe[N'}

* for £ 2 1, as function of e (for a fixed hO and p=1)

1/m
0
&

Here m=3 and y(0)=10, see Tab.3, and Fig.2b.

The convergence rate of LDC, FAC and FIC have been also compared (Tab.4):

* for FAC : we study the wvariations of the Euclidean norm of the
composite residual |rl(§(u)|2 for k = 1 to y0) (Fig.5a), and a convergence rate

p is calculated by a geometric mean :
| rZ(O)(“”z 1/(vo)-1)
p= -

RACOI

* for LDC or FIC: we study the variations of quantities 51;: |[ul; - ulg'lg |2

for k = 1 to y(0) (Fig.5b), and a convergence rate p is then estimated by :

§Y(0) 1/(yo)-1)
1]

81

0
Comparative Numerical Results

1) - By comparing a no-zoom method and a ZOOM one, we notice that the
error globally decreases ; between two increments of p or ¢, it is divided by
an elevated average t-factor of between 1.5 and 3.5 (Tab.1, Tab.2, Tab.3). For
problem (#2), the decrease is monotonic and there seems to be good analogy
between the variation of the error as a function of p (for e‘=1) or of ¢ (for
p=1), (see Fig.2a and Fig.2b). The influence of the position and dimensions of
the local grids (ZG) becomes negligible as hO decreases [7]. Due to the choice



of discretizing on a Cartesian mesh independently of the geometry of the
heterogeneity, the error for problem (P1) does not decrease monotonically as
already noticed in [7,8].

2) - In many cases, the error obtained with zoom is less than computed
without zoom on a single basic grid of mesh size hos he*. In particular, Fig.4
shows that the local discrete error |el;[ calculated point by point on the
diagonal of the domain (®2), by a two-grid FIC method (ho=1/16, h1=h 0/2, k=2)
is globally better than the error obtained with No Zoom at the corresponding
nodes of BG (¢=0, h0=1/32). The former results are more accurate inside the
refinement region and get closer to the latter case far from the interface. Such
remarks can also be made for the discrete error norms in the other Tables or
Figures. However, the error is not reduced beyond a threshold value consistent
with the order of precision of the discretization schemes on the different
grids  (cf, the  multigrid  defect  correction  method  using  Richardson
extrapolation [1]).

3) - The two-grid FAC and FIC methods vyield error results of the same
order of magnitude for both problems. These results are far better than for
LDC for problem (#1), where the flux conservation plays an important role. On
the contrary, LDC yields as good results as the others for problem (#P2), and
sometimes better. However, as LDC does not deal with the interface fluxes, but
only works on the solution inside the open refinement region, it can become
inefficient (t = 1) if the refinement region does not contain enough coarse
nodes on which the local defect correction is performed (Tab.1, Tab.2, Tab.3).

4) - The results with the version FIC(w) for 0,1 £ ® < 0.5 are nearly
similar to those obtained with © = w(¢,x)(u) calculated by (6) (Fig.3). That
could justify the interest of the approximate version FIC(w), and particularly
as a preconditioner of the discrete problem, as suggested in [4].

5) - Because of its exact character, the FAC method yields the far best
convergence rate, a mean value of 0.16, nearly independant of both ho and h1
(Fig.5a and Tab.4). We obtain a mean convergence rate of 042 for FIC(w=0.2),
just a little better than LDC with 0.50 . These convergence rates remain not
very sensitive to the wvariations of ho and ¢ (Fig.5b and Tab.4). However,
those of FIC have a noticeable tendency to become better as the number of grid
levels (or 8‘) increases (see Tab.4).
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CONCLUSION

Despite its non-exact character, FIC provides as good results as FAC,
concerning the analysis of discrete errors for both the two tested problems.
In particular, FAC and FIC proved to be better than LDC for problems where the
flux conservation locally plays a main role.

FAC yields very good convergence rates (p=0.16), better than LDC (p=0.50)
or FIC (p=0.42), but its multilevel implementation remains more difficult.
However, the use of FIC as a preconditioning technique of the discrete problem
is likely to be very interesting, especially for the approximate  version
FIC(w) where the factor ® becomes a relaxation parameter. We are currently
testing such a procedure for Navier-Stokes problems.
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Tab.

Tab. 2.

L.

Problem (P!) - Two Grid Zoom ¥(0) = 2 - Discrete L2 norm of the error

h,|200M x =0.375 et x,=0.625| 200 x =0.25 et x_=0.75
hy | NO ZOOM |h =2 2
2l e FAC FIC LDC FAC FIC
w = 0.55 w = 0.40
p=1 |0.434E-1|0.493E-1]0. 210E-1 0. 434E-1 0. 732E-2 | 0. 639E-2
p=2 |0.434E-1]0.790E-1]0. 12261 0. 434E-1]0. 133E-1]0. 106E-1
18 | 0.438E-1
p=3 |0.434E-1]0. 330E~1]0. 589E-2 0. 434E-1| 0. 289E-2 | 0. 251E-2
T | 100 | 1.10 | 1.95 | 1.00 | 2.47 | z59
p=1 |0.689E-2(0.167E-1/0. 119E-1 0. 739E-2 | 0. 986E-2|0. 106E-1
p=2 |0.689E-2|0.374E-2|0. 394E-2|0. 297E-20. 123E-2] 0. 161E-2
1716 | 0.689E-2
p=3 |0.689E-2]0.255e-2(0. 3395-2|0. 214E-2|0. 673E-3| 0. 592E-3
T 1.00 1.39 1.27 1.48 2.17 2.27
p=1 |0.136E-1{0.342E-2 0. 538E-2| 0. 244E-2 |0. 160E-2] 0. 201E-2
p=2 [0.140E-1]0.295E-2(0. 412E-2|0. 174E-2| 0. 428E-3]0. 392E-3
1,32 | 0.982E-2
p=3 [0.134E-1{0.326E-2 0. 331E-2|0. 153E-2|0. 233E-3| 0. 262E-3
v | 090 | 1.44 | 1.48 | 1.8 | 3.48 | 3.35
1/64 | 0.192E-2
17128 0.648E-3
1/256| 0.193E-3

Problem (P2) - Two Grid Zoom 7(0) = 2 - Discrete L-Energy norm of the error

h 200M x =0 et x,=0.25 Z00M x =0 et x_=0.5
h, | N0 200M n == 2
2 LDC FAC FIC LDC FAC FIC
w = 0.20 ) w = 0.20
p=1 |0.342E-1]0. 152E-1|0. 168E-1|0. 120E-1|0. 138E~1|0. 139E-1
p=2 |0.342E-1|0.817E-2{0. 110E-1|0. 441E-2|0. 511E~2|0. S53E-2
1/8 | 0.342E-1
p=3 [0.342E-1 0. 622E-2]0.990E-2|0.221E-2|0. 250E-2 0. 346E-2
T 1.00 1.77 1.51 2.49 2.39 2.15
p=1 |0.723E-2]0.829E~-2|0.837E-2|0. T04E-2 | 0. 818E-2|0. 819E-2
p=2 |0.270E-2{0.308E-2{0.337E-2|0. 232E-2] 0. 282E-2 | 0. 285E-2
1/16 | 0.206E-1
p=3 |0.140E-2|0.152E-2|0. 215E-2|0. 627E-3|0. 975E-3|0. 107E-2
T 2.45 2.38 2.12 3.20 2.76 2.68
p=1 |0.454E-20.527E-2]0.527E-2|0. 453E-2 0. 526E-2]0. S26E-2
p=2 |0.150E-2{0.182E~20. 184E-2|0. 149E-2]0. 180E-2 0. 180E-2
1/32 | 0.133E-1 ——
p=3 |0.407E-3|0.628E-3]0. 699E-3|0. 387E-3|0. 570E-3]0. 577E-3
T 3.20 2.77 2.67 3.25 2.86 2.85
1/64 0. 888E-2
1/128| 0.607E-2
1/256| 0.420E-2
1/512| 0.294E-2
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0.5 -

Tab. 3. Problem (P2) - Multilevel Zoom LDC/FIC
*
7(0) = 10, h£+l =h,/2 0=8=8-1,x =0andx
1 2
. 2
Discrete L° norm of the error
number Z00M FIC
h, | Mo zooK of ZOoM
-0 | Fle | C 202 w=035
¢" = 1 |0.806E-2|0.869E-2] 0.787E-2
1* = 2 |0.440E-2]0.625E-2] 0.465E-2
1/8 | 0.209E-1 - ,
: ¢ = 3 |0.368E-2|0.606E-2] O.428E-2
B T 1.78 1.51 1.70
t" = 1 |0.399E-2]0. 404E-2| 0.394E-2
t* =2 |o.157E-2|0. 199E-2] 0. 166E-2
) 1716 | 0.10SE-1 .
¢ = 3 |o.102E-2|0. 165E-2| 0.115E-2
- r 2.18 1.85 2.09
= 1" =1 |o.186E-2]0.202E-2] ©0.249E-2
1" = 2 |0.969E-30. T68E-3| 0.809E-3
1/32 | 0.529E-2 .
¢ = 3 |o0.711E-3[0. 416E-3| 0.514E-3
x 1.95 2.33 2.18
1/64 0. 265E-2
1/128] 0.132E-2
1/256| 0.662E-3
1/512! 0.331E-3
Tab. 4. Problem (P2) - Multilevel Zoom LDC/FIC - Two Grid Zoom FAC
*
7(0) = 10, hm=h/z"ostzse—1,x1 =0 and x, = 0.5 -
Convergence rate p
" ““3:" Z00M | Z0OM FIC Z00M
° | grids LDC w=0.2 FAC
p=1 p=1 [p=1 1p=2 |p=3
=1 0.53 0.46 |0.14/0.15/0.15
" =2 0.45 0.42
1/8 .
" =3 0.43 0.34
=1 0.56 0.44 |0.14]0.16]0.16
=2 0.49 0.42
1/16 .
=3 0.48 0.39
=1 0.50 0.47 |o.15|0.17|0.18
¢ =2 o.51 0.44
1/32 -
t' =3 0.50 0.40
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Discrete L-Energy norm of the error
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Multi-Grid Domain Decomposition Approach for Solution of
Navier-Stokes Equations in Primitive Variable Form

Hwar-Ching Ku *
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Bala Ramaswamy
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Summary The new multi-grid (or adaptive) pseudospectral element method has been carried out
- for the solution of incompressible flow in terms of primitive variable formulation. The desired features
of the proposed method include (1) the ability to treat complex geometry; (2) the high resolution
adapted in the interesting areas; (3) the minimal working space; and (4) effective under the multiple
processors working environment.

The approach for flow problems, complex geometry or not, is to first divide the computational
domain into a number of fine-grid and coarse-grid subdomains with the inter-overlapping area. Next,
implement the Schwarz alternating procedure (SAP) to exchange the data among subdomains, where
the coarse-grid correction is used to remove the high frequency error that occurs when the data
interpolation from the fine-grid subdomain to the coarse-grid subdomain is conducted. The strategy
behind the coarse-grid correction is to adopt the operator of the divergence of the velocity field, which
intrinsically links the pressure equation, into this process. The solution of each subdomain can be
efficiently solved by the direct (or iterative) eigenfunction expansion technique with the least storage
requirement, i.e., O(N*) in 3-D and O(N?) in 2-D.

Numerical results of both driven cavity and jet flow will be presented in the paper to account for
the versatility of the proposed method.

*Partially supported by the SPAWAR under the Contract Number N00039 - 91 - C - 0001
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1 Introduction

Due to the advance of numerical techniques, numerous CFD algorithms have been developed to
pursue the hard-to-approach flow problems. Nevertheless, numerical algorithms should have desired
features of (1) the ability to deal with the variety of geometrical shapes; (2) arbitrary layout of dense
grid points in the interesting areas; (3) the minimal working space; and (4) the low computational
time to achieve such a goal. The development of a pseudospectral element method in these areas is
our major Concern.

One of the improvements in the area of feature (2) is the multi-grid technique, which has long been
advocated by the finite-difference method [1, 2]. On the same computational domain, a sequence of
uniform grids are employed to accelerate the convergence of iterative methods. The work rests on the
“standard coarsening,” i.e., doubling the mesh in each direction from one grid to the next coarsest
grid and also smoothing the residual to the next coarse grid (restriction). Solve the problem on the
coarse grid (low frequency domain) and the coarse-grid correction transfers back (prolongation) to
the fine grid (high frequency domain) to gain rapid convergence. The technique developed so far,
even with the inclusion of an adaptive scheme, is still limited to the simple complex geometry with
uniform grids in the Cartesian coordinates, but is less for the non-uniform grids in the curvilinear
coordinates. )

The SAP iterative scheme has been successfully applied by the pseudospectral element method
to those (simple complex) configurations where the overlapped grids are located at the same places
[3, 4]. Here we refer to such cases as a single-grid SAP method because no error is involved during the
data interpolation process. But under some circumstances, due to the complexity of the geometrical
configuration such as possible layout of mixed types of grids (Cartesian, “O” or “C”) or the necessity
of applying adaptive fine grids for high resolution in one area and coarse grids for less resolution
in others, the overlapped grids cannot be collapsed at the same position. Careful treatment on the
overlapped grids by the SAP iterative scheme to eliminate the high frequency error due to the data
interpolation will be the main objective in this paper. On the other hand, the question arises of
how the continuity equation is satisfied in the overlapping area (including the interfaces between the
fine-grid and coarse-grid subdomains) when solving the incompressible Navier-Stokes equations in
primitive variable form. It reflects the fact that the boundary conditions for the pressure should link
the incompressibility constraint in some respects. Extension of single-grid SAP to the multi-grid SAP
domain decomposition method to overcome the above-mentioned difficulties will also be addressed.

The paper consists of five additional sections. Section 2 derives a primitive variable form of the
Navier-Stokes equations. Section 3 discusses the multi-grid SAP domain decomposition method.
Section 4 presents numerical results of proposed 2-D problems, and the final section provides the
conclusions.

2 Primitive Variable Formulation

In tensor notation, the time-dependent Navier-Stokes equations in dimensionless form can be de-
scribed as

au,' 6u,- ap 1 62u,'

3 %5, 0z | Reoa? (1a)

Bu,- _
Fraall (1b)
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Here u; is the velocity component and Re is the Reynolds number.
The method applied to solve the Navier-Stokes equations is Chorin’s [5] splitting technique. Ac-
cording to this scheme, the equations of motion read
Ou; Op
— 4+ X _F 2
o "o @)
where F; = —u;0u;/0z;+1/Re 8%;/3:1:?.
The first step is to split the velocity into a sum of predicted and corrected values. The predicted
velocity is determined by time integration of the momentum equations without the pressure term

@it = ul + AtFP 3)

The second step is to develop the pressure and corrected velocity fields that satisfy the continuity
equation by using the relationships

| | Ap
ntl _ ookl _ A, OP
uj ] Atam,- (4a)
Jultl
oo 0 (4b)

Here the superscript n denotes the n-th time step. Note that the size of a stable time-step At can be
increased by using an adaptation of Runge-Kutta techniques [6] for the high Reynolds number and
the Stokes solution for the low Reynolds number [3], respectively.

An equation for the pressure can be obtained by taking the divergence of Eq. (4a). In view of Eq.
(4b), it governs

621) 1 Ou;
522 = Nidw, (5)

Note that whenever solving Eq. (5) the identity of Eq. (4a) should be utilized to absorb the given
boundary conditions of the velocity components [7].

If p satisfies Eq. (5), then u™*! does indeed satisfy Eq. (4b). The solution of the pressure equation,
Eq. (5), is the most computationally expensive step, while in Cartesian coordinates it can be directly
solved numerically by the separation of variables [7]. Eq. (5) is of the general form,

Lp=S (6)

for some linear operator L on some finite dimensional vector space. The properties of the operator
L depend on the methods chosen to represent the fields and their derivatives.

Let the pressure p and source term § in Eq. (6) be expanded in a series of eigenfunctions such
that

p=EXpEYTEZT (7a)
S=EXSEYTEZ". (7b)

then the solution of three-dimensional pressure Eq. (5) can be reduced to the simplest algebraic form

(ai+ Bi+ v)bijre= Sijk (8)
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where «;, 8; and 7 are the eigenvalues with respect to the discrete derivative matrices of the linear
operator, L, and EX,EY,EZ are the corresponding eigenvectors associated with each eigenvalue.
However, eigenvalues may not be real due to the complexity of an operator L. Without putting any
restriction on eigenvalues, complex eigenvalues and their associated eigenvectors are permitted if the
pressure gradient at the imaginary part vanishes. This is true because only the pressure gradient
drives flow instead of the pressure itself. However, the effort of the matrix multiplication will be
increased by a factor of four if all the calculations of Eqgs. (7) are performed by the purely complex
variables. Fortunately, not exceeding a factor of two will be reached if one takes advantage of (1) the
purely real part of eigenfunctions for matrix multiplication; (2) the source term S being real; and (3)
choosing only the real part of pressure as the pressure solution. The way for (1) includes reordering
the eigenfunction into two parts: real versus complex, and similarly for the eigenvalues.

The iterative preconditioned method for the solution of pressure in the curvilinear coordinate
system can be found in [8]. Note that if there are N degrees of freedom in each direction the overall
memory required for finding the solution to the pressure equation in three dimensions is O(N?*). This
is the same type of maximal storage efficient scaling that we have for the velocity field.

Viewing the solution of the Navier-Stokes equations by the splitting method, two steps account
for most of the run time, predicted velocity and the pressure solution. The bulk of these two steps
can be concisely described in terms of dot products and matrix multiplication between subsets of
array. Importantly, no data dependency occurs when running programs on parallel machines.

3 Domain Decomposition with Multi-Grid SAP

The solution of the Navier-Stokes equations via the domain decomposition approach consists of first
dividing the computational domain into a number of subdomains with inter-overlapping areas, where
the grids inside the overlapping area may or may not be located at the same places. Next imple-
ment the SAP for exchanging data among subdomains, i.e., solving the problem on each subdomain
separately and then updating the velocity field on the overlapped interfaces. The advantages of this
approach include (i) less memory access, local rather than global, and (ii) easy treatment of complex
geometry. , S

In addition to the Lagrangian constraint between the pressure and velocity fields, the noncoinci-
dent overlapped grids in the inter-overlapping areas among subdomains even enhance the difficulty
of applying the multi-grid technique. However, the idea of “coarse-grid correction” is still effective
to reduce the high frequency error from the interpolated residual of the fine-grid subdomain. The
strategy behind the coarse-grid correction process is to adopt the idea proposed by Thompson and
Ferziger [9] and is modified as

Ve ue— Ve (ITag) =I(ry =V uy) (9)

Here V- represents the operator of divergence on the coarse-grid subdomain. I is an interpolation
operator from the fine-grid subdomain f to coarse grid subdomain c, and u is the velocity component.
r¢ is simply the result of the divergence of the velocity field which should be set to zero. The left hand
side of Eq. (9) is the difference between the coarse-grid operator acting on the coarse-grid subdomain
and the coarse-grid operator acting on the interpolated fine-grid subdomain (which is held fixed).
The right hand side of Eq. (9) is the interpolated residual of the fine-grid subdomain. Tt is obvious
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. that once the solution of the fine-grid subdomain has been found the residual will be zero (exactly
satisfying the pressure equation), and it also implies

uc=Icfuf (10)

When the residual is non-zero, Eq. (9) acts as a forcing term for the coarse-grid correction to transfer
the correction of the velocity field back to the fine-grid subdomain, i.e.,

u} = uf? + If(u, — I/uj (11)

This is vital for the success of the scheme. Changes in the velocity field are transferred back to the
fine-grid subdomain rather than the velocity field itself. Notice that when the overlapped grids in
the overlapping areas are collapsed at the same places the interpolation operator I/ automatically
becomes a unitary matrix.

The multi-grid SAP iterative solution of the incompressible Navier-Stokes equation in primitive
variable form for a driven cavity flow sketched in Fig. 1 is summarized by the following algorithm:

n+l

1. First assume u™*! on AB. Usually u™ will be a good initial guess.

2. Solve fine-grid domain I employing the boundary conditions derived from the divergence of
the velocity field, including on AB, where the pressure solution is directly obtained by the
eigenfunction expansion method.

3. With the interpolated solution of u™*! from step (2) on domain ITIC I, solve coarse-grid domain
I employing the same type boundary conditions including on CD to update u™*! on domain
IIT C II by the coarse-grid correction process.

4. Repeat steps (2) & (3) until the velocity u™*! on AB, CD does not change.

In order to guarantee that consistent values of velocity (or pressure gradient) be generated in the
overlapping domains III, satisfying Eq. (10), the divergence of the velocity field V - u needs to be
actually computed in whichever domain I or II is counted [4]. Since u on domains III is not known
a priori, the divergence of the velocity field is only set to zero at the first SAP iteration for step (2).
According to this approach, the continuity equation is satisfied on domains II (including III C II)
and I (excluding III C I), which is revealed from Eq. (9) that the continuity equation is only satisfied
on the fine-grid domain II. More specifically, the issue of how to satisfy the continuity equation along
the interfaces of fine-coarse grid domain can be easily resolved | by the proposed approach, namely,
V -u on AB satisfied on the coarse-grid domain I, and V- u on CD satisfied on the fine-grid domain
II. However, the error index of the continuity equation on domain III C I will indicate how good the
interpolation is (affected by the layout of overlapped grids) and whether any steep change of flow
field exists.

Three main issues occurring in the overlapping area between the fine-grid and coarse-grid subdo-
mains one might often encounter are how to (1) efficiently implement the interpolation; (2) adequately
represent the predicted velocity; and (3) explicitly impose the global mass conservation. Each will
be addressed separately.

297



3.1 Data interpolation

Finding the image (£,7), —1 < £ £1,—1 < 5 < 1, of a collocation point (z,y) from the fine-grid
subdomain II mapped onto the coarse-grid subdomain I (or vice versa) is first determined by using
the two-dimensional Lagrange interpolation to seek its corresponding position falling into an element
on the coarse-grid subdomain that contains (M + 1) x (N + 1) collocation points, & = cosmi/M (i =
0,...,M),n; = coswj/N(j =0,..., N), such that

M N

T = Z_:O —~ amnTm(f)Tn(W) (12a)
M N

y= E—O ZobmnTm(ﬁ)Tn(n) (12b)

where T,, denotes the mth order Chebyshev polynomials. Unknown expansion coefficients, @mn, brn,
can be easily obtained by the prescribed points (z,y) on the coarse-grid subdomain I through

M N

z(&i,n5) = E_O Z_:OamnTm(&)Tn(m) (13a)
"M N ;

y(éins) = Z_O Z_:obmnTm(&)Tn(n,-) (13b)

With a given point (z,y) in the physical space of fine-grid subdomain II, its image ({,7) on the
coarse-grid subdomain I can be iteratively solved by the Newton-Raphson method. Once the one-
to-one correspondence between the fine-grid and coarse-grid subdomains has been established, the
equation required to generate a function ¢7(z,y) on the fine-grid subdomain interpolated from the
coarse-grid subdomain, now becomes

M N
¢’(z,y) = Z_% 2 N{E)Ny{(n)$°(&:m;) (14)

j=0

where $°(£:,n;) denotes the function value at the collocation point (&;,m;) on the coarse-grid subdo-
main, and N,(£), Nj(n) are the shape functions defining the geometry of the element on the coarse-grid
subdomain, whose expressions are

N{(§) = X_:OTm(f)Tm(fi) (15a)
N
Nj(n) = Z_%Tn(n)Tn(m) (15b)

where the matrices T (£) and T}, (€) are the Fourier cosine series and their inverse [7]. Note that the
shape functions Ni(£), N;(n) satisfy the Kronecker-delta property, i.e., Ni(§m) = bim, Nj(nn) = éjn.
Be aware that it requires much less effort to perform the data interpolation if the one-to-one
correspondence for the shape functions between subdomains can be stored (once and for all). Also
the cost for such additional memory is negligible compared to that declared by a single variable.
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3.2 Predicted velocity

Since the predicted velocity in the overlapping area generated from Eq. (3) by the fine-grid subdomain
is slightly different from that obtained by the coarse-grid subdomain, how to control the predicted
velocity in order to keep the error index, £3 norm of w = ||u.— IJuy|| minimal, is of great importance.
Numerical experiments suggest that the following dynamic relationship

Uy = (l—wa) l_lf-l—wa I;ﬁc (16)

gives the best fit. Here the exponent « is chosen as 0.4 for various tested problems.

3.3 Global flow rate

For the inflow-outflow problems the coarse-grid velocity field interpolated from the fine-grid subdo-
main may not exactly satisfy the global mass conservation, and a slight adjustment to the velocity
field is imperative. A common-used formula will meet such a requirement, i.e.,

/ue:cact .dA
old

! /‘uold. dA (17)

4 Results and Discussion

For the numerical test of the driven cavity flow problem, layout of elements (6 points per element)
in the fine-grid and coarse-grid subdomains at the Reynolds number of 400 and 100 are displayed
in Figs. 2a and 2b, respectively. The overlapping area is not explicitly shown in the figures, but
just imagine the extension of one more element from the coarse-grid subdomain into the fine-grid
subdomain. The layout of elements is in accordance with the requirement to resolve the steep
changes inside the boundary layers. When exchanging the data through the interpolation in the
inter-overlapping area, the high frequency error introduced by the fine-grid subdomain will pollute
the results throughout the whole computational domain. It can be simply proved by checking the
error index, £; norm of w = |lu. — Ifuy|, in the overlapping area. w will increase with marching
in time domain, and eventually become an unreasonably big number under which the solution does
not exist. With the multi-grid SAP approach, both results produce O(10~*) for w, instead. When
comparing the streamline plots, ¥min = -0.1055 for Re = 100 and t%min = -0.1163 for Re = 400, with
the most accurate results of Ghia [10], good agreements can be observed in Fig. 3.

For the inflow-outflow jet problem, a nozzle is designed to gain a high speed fluid with a smooth
change of the convergent channel. The configuration of jet flow is plotted in Fig. 4. A jet emanating
from the nozzle with an aspect ratio H/D = 144 (the width of tank to nozzle) is used to understand the
turbulent characters through the direct numerical simulation. With a strong stratification imposed
in the vertical direction the two-dimensional turbulent flow calculation will be a good approximation
to the three-dimensional case. The calculation is carried out up to the Kolmogoroff length scale
where the energy transferred from the large scales is in equilibrium with the energy dissipated in the
smallest scale by the molecular viscosity. Certainly, for the purpose of direct numerical simulation
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the Reynolds number should not be large so that the machine can still handle the huge number of
points required for the resolution of different length scales. The computational domain is decomposed
into three subdomains: the upstream nozzle where the inflow is developed to gain a high speed, the
immediate downstream from the exit of the nozzle where the high speed jet is discharged into the
tank, and the far downstream (fine grids) where a well-developed turbulent flow can be traced.

Let us first check the error index w for the inflow-outflow jet problem without using the multi-grid
SAP technique. The w around O(107") seems all-right at Re = 100 initially, but the onset of noise
starts to destabilize the downstream flow field at the Reynolds number of 250 and w increases up
to 0(107%). That clearly demonstrates the high frequency polluting that results on the fine-grid
subdomain, but the noise can be totally removed by using the multi-grid SAP technique. Fig. 5
depicts the streamline plot of jet flow at Re = 250. During the time evolution of the jet flow, the
symmetry of the jet front will not be distorted at the early stage (Fig. 5a) until the phase speed of
vortex shedding (due to flow instability) travels faster than that of the jet front. As seen in Fig. (5b),
a pair of vortices adjacent to the jet front persisting throughout the course represent the extrusion
of the jet into the ambient fluid. Once the jet front is caught up by the incoming travelling waves,
the energy transferred by the vortex shedding, in terms of the cascade process from the highest at
the nozzle exit (high shedding frequency) to the lowest at the jet front (low shedding frequency),
splits into two parts, one for the jet front to push against the ambient viscous resistance, another
for the vertical motion. The intensity of vertical motion behind the jet front is gradually enhanced
as visualized by the splitting streamlines, and their patterns move backward toward the exit of the
nozzle where a distinct pair of vortices exist. The appearance of similar pairs of vortices can also be
confirmed by the experiment at the high Reynolds number [11].

5 Conclusions

The solution of the Navier-Stokes equations in a primitive variable form has been solved by the pseu-
dospectral element method via the multi-grid domain decomposition technique. The computational
domain is divided into a number of simple subdomains with the inter-overlapping zone, of which the
fine grids (or fine-grid subdomain) are used in the areas with the steep change of flow field while the
coarse grids (or coarse-grid subdomain) are used in the others. During the data exchange among
subdomains, the coarse-grid correction technique is used to eliminate the high frequency error caused
by the data interpolation from the fine-grid subdomain to the coarse-grid subdomain.
Both driven cavity and jet flow demonstrate the versatility of the proposed multi-grid method.
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SUMMARY

We describe a multigrid multiblock method for compressible turbulent flow simulations and present
results obtained from calculations on a two-element airfoil. A vertex-based spatial discretization
method and explicit multistage Runge-Kutta time-stepping are used. The slow convergence of a
single grid method makes the multigrid method, which yields a speed up with a factor of about
-20, indispensable. The numerical predictions are in good agreement with experimental results. Tt
1s shown that the convergence of the multigrid process depends considerably on the ordering of the
various loops. If the block loop is put inside the stage loop the process converges more rapidly than
if the block loop is situated outside the stage loop in case a three-stage Runge-Kutta method is used.
If a five-stage scheme is used the process does not converge in the latter block ordering. Finally, the
process based on the five-stage method is about 60% more efficient than with the three-stage method,
if the block loop is inside the stage loop. -

INTRODUCTION

Numerical simulations of turbulent flow in aerodynamic applications are frequently based on the
Reynolds-averaged Navier-Stokes equations. One of the relevant problems in aeronautics is the pre-
diction of flow quantities in complicated geometries, such as the multi-element airfoil (see figure 1).
The simulation of turbulent flow around such a multi-element airfoil configuration was one of the

—

Figure 1: Geometry of a two-element airfoil.
applications selected for the compressible flow solver which was developed by our group and NLR
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as a part of the Dutch ISNaS project [1]. For this application the use of a single-block, boundary-
conforming, structured grid is impossible and one may select either an unstructured grid approach
or a block-structured grid approach. Although the former technique has been successfully applied by
others [2], we selected the block-structured approach in view of the transparent data structure in the
coding, ease of implementation of the turbulence model and a high flexibility with respect to the use
of different physical models in different parts of the computational domain.

In a previous paper [3] it has been shown that for laminar and turbulent flow around a single airfoil
the introduction of the multiblock structure has no influence on the results, with respect to both the
steady-state solution and the convergence rate. Furthermore, invoking the Euler equations instead
of the Navier-Stokes equations in blocks outside the boundary layer appeared to have no significant
influence on the results. In this paper we describe the application of the multiblock concept to
the multi-element airfoil. If the Euler equations are used throughout the computational domain,
a converged steady-state solution is obtained within a reasonable calculation time. However, if the
Reynolds-averaged Navier-Stokes equations are solved in the boundary layers, the rate of convergence
is unacceptably low. Therefore, a multigrid technique was implemented in order to accelerate the
convergence. The resulting gain in calculation time is close to a factor of 20, and the converged
solution is in good agreement with wind-tunnel measurements.

In section 2 the numerical technique, which is based on a combination of a finite volume method
with central spatial differencing and a Runge-Kutta explicit time-stepping method, is described. The
results, both for inviscid and for viscous simulations, are presented in section 3. Finally, in section 4
some conclusions are summarized.

NUMERICAL METHOD

In this section we describe the numerical method used in the flow solver. The two-dimensional,
compressible Navier-Stokes equations can be written in integral form as

% /] Udady| + [ (Fdy = Gdz) = 0, (1)

where U represents the vector of dependent variables,
U = [p, pus o, EN, @)

with p the density, v and v the Cartesian velocity components, and E the total energy density.
Further, Q is an arbitrary part of the two-dimensional space with boundary 99 and F' and G are
the Cartesian components of the total flux vector. This flux vector consists of two parts: the non-
dissipative or ’convective’ part and the dissipative or 'viscous’ part, which describes the effects of vis-
cosity and heat conduction, and involves first order spatial derivatives. The Navier-Stokes equations
(1) are averaged over a sufficiently large time interval. Due to the nonlinecar terms in the convective
fluxes, the resuvlting "Reynolds-averaged Navier-Stokes’ equations involve averages of products of two
velocity components. These terms are modeled by a suitable turbulence model. In the present paper
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the algebraic Baldwin-Lomax turbulence model, in which the unknown terms are modeled by eddy
viscosity terms, is adopted [4].

The discretization of the Navier-Stokes equations follows the method of lines, i.e. the spatial
discretization is performed first, and subsequently the resulting set of ordinary differential equations
is integrated in time, until the steady state solution is approximated. First the computational domain
is divided into blocks and each block is partitioned in quadrilateral cells with the help of a structured,
boundary-conforming grid. The variables are stored in the grid points. A finite volume method is used
in which the integral form of the Navier-Stokes equations is applied to a control volume €, bounded
by the dashed lines in figure 2. The convective flux through a boundary of this control volume is

Figure 2: Control volume in the vertex-based method.

approximated using the value of the convective flux vector in the midpoint of the boundary. The
latter is calculated by averaging over the two neighboring grid points. The viscous flux vector involves
spatial derivatives of the state vector U and is approximated in the corner points of the control volume
with the use of Gauss’ theorem on a grid cell. The viscous flux is subsequently calculated using the
trapezoidal rule. This method is called the vertex-based method.

The method of central differencing leads to a decoupling of odd and even grid points and to
oscillations near shock waves. Even in viscous flow calculations the presence of the viscous dissipation
is insufficient to damp these instabilities outside shear layers. Therefore, nonlinear artificial dissipation
is added to the basic numerical scheme. This artificial dissipation consists of two contributions: fourth
order difference terms which prevent odd-even decoupling, and second order difference terms to resolve
shock waves. The second order terms are controlled by a shock sensor, which detects discontinuities
in the pressure. In the present flow solver the artificial dissipation in the boundary layers, where
the viscous dissipation should be dominant, may be reduced by multiplication with the ratio of the
local and free-stream Mach number. The role of the artificial dissipation in relation to the viscous
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dissipation is discussed in more detail in reference [5].

At the solid wall boundaries the no-slip condition is used. The density and energy density in the
grid points on a solid wall are calculated by solving the corresponding discrete conservation laws,
using the two adjacent cells within the computational domain and their mirror images inside the wall
asthe control volume. The values of the density and energy density in the grid points inside the walls
are adjusted such that the adiabatic wall condition is approximated. The boundary conditions at
a (subsonic) far-field boundary are based on characteristic theory. The extent of the computational
domain can be reduced without affecting the accuracy if a vortex is superimposed on the incoming
free stream outside the computational domain [6].

Due to the topology of the two-element airfoil geometry, special points in the computational grid are
unavoidable. The computational grids used contain two special points at block boundaries, where five
cells meet (see figure 4). These points can be treated in an elegant way within the same numerical
scheme, if the dummy vertices outside the ’current’ block are defined appropriately. The multi-
valuedness of the variables at the special point, caused by this asymmetric treatment, is eliminated
by taking the average of the five different values after all blocks have been treated. This is sketched

in figure 3.

current
block

Figure 3: Control volume for a special point.

The system of ordinary differential equations, which results after spatial discretization, is integrated
in time using a time-explicit multistage Runge-Kutta method. In the present flow solver a three-stage
scheme in which the dissipative fluxes (both viscous and artificial) are calculated once per time-step,
and a five-stage scheme in which the dissipative terms are calculated only at the odd stages, are
implemented. With this treatment both calculation time is saved and the stability region of the
method is increased. Extra calculation time is saved by advancing each grid point at the maximum
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local time-step according to its own stability limit. In this way the evolution from the initial solution
to the steady state is no longer time accurate, but the steady state solution obtained is unaffected.

The above time-stepping method acts as the relaxation method and coarse grid operator in the
multigrid solver (see reference [6]). In this solver an initial solution on the finest grid is obtained with
a full multigrid method. This initial solution is corrected in the FAS-stage, where either V- or W-
cycles can be chosen. A fixed number of pre- and post-relaxations is performed before turning to the
next coarser or finer grid. The solution is transferred to a coarser grid by injection, the residuals by
full weighting and the corrections to the solution are prolonged by bilinear interpolation. In order to
increase the smoothing properties of the Runge-Kutta time-stepping technique an implicit averaging
of the residuals is applied with frozen residuals at the block boundaries. For mono-block applications
this method has given satisfactory results for both two-dimensional and three-dimensional flows [5].

In the multi-element airfoil application care has to be taken in the definition of the residual-vector
in the special points. The proposed treatment of a special point implies that the control volume is
different in each of the five blocks where such a point is found. In the required averaging the five
residual-vectors in a special point are weighed with their corresponding time-steps. Without this
weighing the multigrid process cannot converge to the single grid stationary state solution.

In this multigrid, multiblock solver with a multistage time-stepping method there are various
possibilities for intertwining the different loops. In the present study the grid loop is chosen as the
outer loop and the effect of interchanging the block and the stage loop will be studied. Several
‘competing’ requirements serve as possible guidance for selecting a specific ordering of these loops.
On the one hand an anticipated parallel processing of the different blocks is more efficient, if the
data transfer between the blocks is kept to a minimum, i.e. with the stage loop inside the block
loop. On the other hand the good convergence of the multigrid mono-block solver may be reduced as
the dummy variables near the block boundaries are kept frozen during more stages of the time-step.
This would suggest to put the block loop inside the stage loop. In order to study this dilemma we
implemented these two loop orders in a flexible way: a single parameter determines whether the block
loop is situated inside or outside the stage loop.

RESULTS

Description of the test-case

We will present results for a two-component airfoil geometry consisting of the NLR7301 wing
section, from which a flap has been cut out at a deflection angle of 20° and with a gap width of 2.6%
chord length [7] (see figure 1). The combination of a Mach number of 0.185 and an angle of incidence
of 6° or 13.1°, of which the latter is close to maximum lift conditions, yields subsonic flow. The
Reynolds number based on the chord length of the airfoil is 2.51 x 10®. In the viscous calculations
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the locations of the transition from laminar to turbulent flow are prescribed.

The C-type computational grids (either for inviscid or viscous flow) were constructed by J.J. Benton
from British Aerospace, and are subdivided in 37 blocks (see figure 4). The grid lines are continuous
over block boundaries. Two grids are used: one 'Euler’ grid (inviscid) consisting of 16448 cells, and
a 'Navier-Stokes’ grid (viscous), which is refined in the boundary layers and wakes and consists of

28288 cells.

Figure 4: Block structure of the computational grid.

For both angles of incidence results from wind-tunnel measurement by Van den Berg [7] are avail-
able, including velocity profiles in the boundary layers and the pressure coefficient on the profile.
Since the flow is attached apart from a small laminar separation bubble near the leading edge of
the wing, the adopted turbulence model should be adequate and yield a useful comparison between
experiment and calculation.

Inviscid Flow

In order to test the flow solver on the complicated block structure of the two-element airfoil geom-
etry, we considered the relatively simple inviscid flow case, where in all blocks the Euler equations are
solved. In this way problems related to the turbulence model are separated from possible algorithmic
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problems. The use of the Euler equations implies that the boundary conditions at the solid wall
boundaries have to be changed. For inviscid flow there is only one physical boundary condition of
zero mass flux through the wall. In the vertex based approach the density, the pressure and the
tangential velocity at the wall are approximated by linear extrapolation.

In figure 5 the multigrid convergence behavior of the solver in the 13.1° case is shown. The discrete
Ly-norm of the residual of the density is plotted as a function of the number of W-cycles. A converged
solution is obtained within a much smaller calculation time when compared to the single grid approach
even though only three different grid levels are available. Both for the single grid and the multigrid
calculations machine accuracy was obtained. The specific block structure nor the treatment of the
special points leads to any specific difficulties. For this inviscid test a comparison with experimental
results is not meaningful and will not be made.
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Figure 5: Convergence behavior for inviscid flow at an angle of incidence of 13.1°.

Viscous Flow

We consider the simulations of turbulent, viscous flow and present results for the 6° case only.
Single-grid calculations in which only local time-stepping is applied as a convergence acceleration
technique yield a steady-state solution which is in good agreement with the experimental results.
However, in contrast with a fully inviscid simulation, the rate of convergence is very small, and

311



renders this method unacceptable for practical applications. Therefore, as a method to increase
the convergence rate further, the multigrid technique and implicit residual averaging as described in

section 2 are indispensable.

In a simulation of turbulent flow at high Reynolds number it is important that the effects related
to the physical dissipation are not outweighed by those of the numerical or artificial dissipation. This
requirement could give rise to difficulties in the present multigrid method, since the time-stepping
method used requires a certain minimum amount of dissipation for sufficient smoothing of the large
wave-number components of the error (see reference [5]). If the artificial dissipation in the boundary
layer is reduced by scaling with the ratio of the local and free-stream Mach number, i.e. decreasing
the smoothing properties of the time-stepping method, a converged solution (engineering accuracy)
could be obtained by increasing the number of pre- and post-relaxations. The convergence behavior of
this calculation during the FAS stage is shown in figure 6, where the discrete Lz-norm of the residual
of the density is plotted as a function of the number of W-cycles. In the blocks outside the boundary
layers and wakes the Euler equations are solved instead of the Navier-Stokes equations. The good
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Figure 6: Viscous flow at an angle of incidence of 6.0°: convergence behavior

agreement with the wind-tunnel measurements can be inferred from figure 7, where the experimental
and numerically predicted pressure coeflicients on the airfoil and flap are shown.

This solution was obtained with the block loop inside the stage loop of the five-stage Runge-Kutta
time-stepping method. Hence, the variables at the dummy vertices outside a block are updated
after every stage, which implies that the effects of the multiblock structure on the convergence are
kept to a minimum. The frequency of data transfer between the blocks makes this method less
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Figure 7: Viscous flow at an angle of incidence of 6.0°: comparison of the pressure coefficient on the
airfoil between calculation (solid) and experiment (dashed).

efficient for parallel processing. However, with the block loop outside the stage loop, i.e. with an
update of the dummy variables only after five flux evaluations, a converged solution could not be
obtained. Apparently, the interval between two moments of data transfer between the blocks has to
be sufficiently small in order to obtain a convergent multigrid method.

Further evidence for this statement is obtained from calculations with a three-stage instead of a
five-stage Runge-Kutta time-stepping method. If the block loop is outside the stage loop, the dummy
variables are updated after three flux evaluations. “Although the rate of convergence is lower than
in the case with the loops interchanged (see figure 8), the solution has converged within engineering
accuracy after =~ 200 W-cycles. A comparison of the three-stage and five-stage schemes with the
block loop inside the stage loop shows that the five-stage scheme is more efficient: about 60 W-cycles
suffice to get the residuals at the same level as with the three-stage scheme after 200 W-cycles. The
five-stage scheme leads to a reduction in calculation time of approximately 60% in this instance.

DISCUSSION

We presented simulation results obtained with a multigrid multiblock method for a two-element
airfoil. Both viscous and inviscid calculations were performed using the same multigrid process
and the same vertex-based spatial discretization method. Moreover, either a three- or a five-stage
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Runge-Kutta scheme was considered for the integration in time and the smoothing properties of this
relaxation method were further enhanced through the introduction of local time-stepping, implicit
residual averaging in which the residuals at the block boundaries were kept fixed to their non-smoothed
values.

The inviscid calculations have shown that a solution which is converged up to machine accuracy can
be obtained with this multigrid method. A comparison with the single grid simulation method shows
that a considerable reduction in calculation time was obtained with the multigrid method, although
the convergence of the single grid method for inviscid calculations was already quite acceptable. We
also investigated two different numerical boundary conditions at the solid walls. Tt appeared that
linear extrapolation of the pressure not only leads to a better convergence than constant extrapolation,
but also gives rise to a much smaller entropy layer around the airfoil. The resulting drag coefficient,
which theoretically should equal zero in this subsonic flow, is reduced by almost 60%.

In the viscous calculations the single grid method was found to yield a well converged result in the
6°-case, however, the convergence towards the steady state solution was extremely slow and makes
the use of a multigrid approach essential. A comparison of the calculation times required in both
methods shows that a total speed-up with a factor of about 20 can be reached. The numerical
predictions obtained for the lift- and pressure coefficients compare well with experimental results
and give confidence in the use of the Baldwin-Lomax model for this application. The convergence
of the multigrid process was studied in detail, showing that the ordering of the various loops in the
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process has a considerable effect. Interchanging the block and stage loops and keeping the grid loop as
the outer loop, yields an optimal convergence when the block loop is put inside the stage loop. If the
stage loop is put inside the block loop then convergence of the multigrid process was absent when
using the five-stage Runge-Kutta method as the relaxation method. Apparently, the smoothing of
the relaxation method becomes less effective as the number of stages between two 'updates’ of the
dummy-variables increases. This result has some less favorable consequences in view of a possible
parallel processing of the multigrid method. On the one hand parallel processing seems more efficient
if the frequency of data transfer between the blocks can be reduced. On the other hand the reduction
of this frequency results in a reduction of the convergence rate of the multigrid process, and in some
instances even to an absence of convergence. This suggests that in a possible parallel processing of
this multigrid method, an optimal rate of data-exchange between the blocks should be determined.
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SUMMARY ﬂ / 7

For second-order elliptic boundary value problems, we develop a nonconforming multigrid
method using the coarser-grid correction on the conforming finite element subspaces. The
convergence proof with an arbitrary number of smoothing steps for V-cycle is presented.

1. INTRODUCTION

Let Q be a convex polygon in R Let f € L}(Q2), « € C1(Q) and 8 € C(f1). We assume there
exists ag such that a > ag > 0 and § > 0. In this paper we discuss convergence properties of the
multigrid method for solving the Dirichlet problem

-V (aVu)+pu = f in Q, (1)
v = 0 on 49, (2)

using P1 nonconforming finite elements(see [5, 6]).

The prototype of the multigrid convergence theory is that

For some number of smoothing steps the multigrid process is a contraction for some
norm. Moreover, the contraction number is independent of the mesh size A.

This was proved for conforming multigrid methods by Bank and Dupont[1]. Braess and
Hackbusch([2] and Hackbusch(8] proved this for the V cycle with one smoothing step. For the
nonconforming multigrid method, this was proved by Braess and Verfiirth[3] and Brenner[4] for the
W-cycle under the condition that each iteration step contains many smoothing steps.

The method presented in this paper consists of a smoothing step on the nonconforming finite
element space of the finest-grid and correction step which is obtained by the conforming multigrid

*This research was partially supported by the National Science Foundation under Grant No. CDA-
9024618 and DMS-9203502.
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method on the conforming finite element subspaces of coarser-grids. The standard nonconforming
multigrid which was proved by Brenner in [4] is based on smoothings and correction on the
nonconforming finite element spaces. The important difference is that Vi_; € Vi and Wi_; C Vy,
where V, and Wj are the nonconforming and conforming finite element spaces on mesh level k,
respectively. Hence we can simply use the natural injection for the intergrid transfer of grid
functions and this intergrid transfer operator preserves the energy norm. Moreover, the error of the
coarser-grid correction is orthogonal to Wy_,. Owing to these, the standard proof of convergence in
[2] for the V-cycle of one smoothing step of the conforming multigrid method carries over directly.
In [3) Braess and Verfiirth added the step length parameter in the correction step of the standard
nonconforming multigrid algorithm to improve the convergence. They proved the convergence of
two-level case of this modified standard nonconforming multigrid with one smoothing step. The rate
of convergence of their algorithm should be better than or at least equal to that of the standard
nonconforming multigrid method but it needs more cost for each iteration. While Brenner proved
the convergence of the standard nonconforming multigrid algorithm only for the W-cycle it is
convergent for the V cycle with one smoothing step in real computation. Also the modified
standard nonconforming multigrid algorithm converges for the V cycle with one smoothing step in
real computation. Our multigrid method is easier to implement and more effective because it needs
fewer computations and communications in a parallel sense. These computations were done in
CM-5 Vector Units'.

This paper is organized as follows. In Section 2 we discuss the fundamental estimates from the
theory of finite elements and the intergrid transfer operator. The multigrid algorithm is discussed
in Section 3. Section 4 contains the contracting properties of the k-level iteration. In the last
section we compare the computational results of three algorithms.

2. THE FINITE ELEMENT SPACES

The variational formulation for (1) and (2) is defined as follows: Find u € H}(Q) such that
a(u,v) = F(v) Vv € Hy(Q),

where

a(u,v) = /ﬂ(aVu-Vv-{-ﬂuv) and F(v):/ﬂfv.
Here, H}(f2) denotes the usual Sobolev space (see [5])-

Let {T*}, k > 1, be a family of triangulations of 0, where T*+! is obtained by connecting the
midpoints of the edges of the triangles in Tk, Let hi := maxpers diam T, then hy = 2hj41.
Throughout this paper, C' denotes the positive constant independent of k which may vary from
occurence to occurence even in the proof of the same theorem.

tThese results are based upon a test version of the software where the emphasis was on providing functionality
and the tools necessary to begin testing the CM5 with vector units. This software release has not had the benefit of
optimization or performance tuning and, consequently, is not necessarily representative of the performance of the full
version of this software.
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It is worth pointing out the motivation of the nonconforming finite elements. In the stationary
Stokes problem for an incompressible viscous fluid, it is realized that a major difficulty exists in the
numerical treatment of the incompressibility condition. Crouzeix and Raviart in [6] advocated the
method that the incompressibility condition is approximated. They have found it very convenient
to use nonconforming finite elements for this purpose. By Uzawa’s method the Stokes equation is
reduced to a sequence of Dirichlet problems for the operator —A. Thus we shall develop a
nonconforming multigrid method for solving (1) and (2).

Now let’s define the nonconforming finite element space

Vi := {v: v|ris linear for all T € T*, v is continuous at the midpoints
of the edges and v = 0 at the mid points on 09} .

Note that functions in Vj are not continuous.
We also use a conforming finite element space for our multigrid method NC-CMG. Define

Wy = {w : w|7 is linear for all T € T*, w is continuous
on { and wlsq = 0}.

The space Vi will be used in the finest-grid space and W in the coarser-grid spaces to obtain
NC-CMG. Observe that W = Vi N H}(Q) = Vi N Viyr.

For each k, define (on Vi + H}())

ar(u,v) = > /T(aVu - Vv + Buv)

TeTk

]k := \Jar(u,u).

The bilinear form a(,-) is symmetric and positive definite on Vi. Moreover, we have the inverse -
estimate[4]

and the energy norm induced by a;

llulle < ChFY|ullz Vu € V. (3)
We also note that if u,v € Hy(Q), then ax(u,v) = a(u,v).

We now recall some fundamental estimates from the theory of finite elements.

Since f € L(Q), elliptic regularity implies that u € H?(Q)(see [7]). For the same f, let uyx € V;
satisfy

ag(ug,v) =Lfv Yv eV,

and let @y € Wy satisfy
ak(tx, v) =/va Yv e W.

Since Vj satisfles the patch test(see [11]), we have the following estimate for the discretization error:

e — wallea + hillu — uslls < ChYlull 52 (4)

i
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(see [6]). The estimate for the conforming descretization error is, of course, well known(see [5]):

llw = dil| s + hillu — @alle < Chillullaa. (5)

From the spectral theory, there exist eigenvalues 0 <Ay S A £ -++ < An, and eigenfunctions
W1, Y2, . v Yny € Vi, (i %5)12 = 6ij (= the Kronecker delta), such that ax(vi,v) = Xi(ti, v) L2 for
all v € V;. From the inverse estimate (3), there exists C' > 0 such that

i < Chi2 (6)

The same results hold for the conforming finite element spaces. The norm [[v|l,,x is defined (see 1
as follows:

T 1/2 n
Iolls,k:= (Z /\,-’yf) where v =) vy € Vi. (7
i=1 i=1
Moreover,
Bollos = llvlliz: and  Jollik = [lv]ls. (8)

And, the Cauchy-Schwarz inequality implies

lax(v, w)| £ [olleeellwlli-cx
for any t € R and v,w € Vi

For v € Vi_; the intergrid transfer operator If_; : Vi1 — Vi is defined as follows. Let p be a
midpoint of a side of a triangle in 7 k_If p lies in the interior of a triangle in 7 k-1 then we define

(I¥_)(p) := v(p).

Otherwise, if p lies on the common edge of two adjacent triangles T} and T} in 7%~!, then we define

(IE-)(B) = 3ol (p) + vln )

From the definition of If_;, it is clear that
I,':_lv =v WweWi1=ViNVi1 C Hé(ﬂ).
In other words, I¥_,|w,_, is just the natural injection.

Now we are ready to state an approximation property.

Lemma 1 Given u € Vi let u* € Wi_1 be the solution of
ap(u —u*,v)=0 VYveE Wg,.

Then
e — w*flix £ Chiflull2-
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Proof. Let g € Vj satisfy
(g,v) = ag(u, v) Yv e V.
Then
Yv € Wk—la ak(U*’v) = ak(uﬂv) = (g)v)'
Now let w € H;(f2) be the solution of the Dirichlet problem

-V (aVw)+pfw = ¢ in
w = 0 on 0Q.

Then by elliptic regularity ||w||g2 < C||g]|zs. It follows from the discretization error estimates (4)
and (5) that

lu—u*llee < [lu—wlrs+ [jw—u*|e (9)
< Ch||wl|g (10)
< CRYg||a. (11)
But
lgll3s = (9,9) = ak(u,g) < Null2dllgllzs -
Therefore,

lglizs < Mullz,x-
Combining inverse estimate (3) and (11), we obtain

c
flu — u*fike € —llu — u*lr2 < Chlluflzx. O

3. THE MULTIGRID ALGORITHM

Now, we consider a decreasing sequence of mesh size hy:

ho>hi > - >he> > hp-

We first describe the k-level iteration scheme of the conforming multigrid algorithm. The k-level
iteration with initial guess z, yields CMG(k, 2, G) as a conforming approximate solution to the
following problem.

Find z € W, such that ax(z,v) = G(v) Vv € Wy, where G € Wj.

Here, W} is the dual space of Wy. For k = 1, CMG(1, 2, G) is the solution obtained from a direct
method. For k > 1, CMG(k, 2, G) = 2z, + If_,q, where the approximation z, € Wj is constructed
recursively from the initial guess z; and the equations

zi = zji-1 + AL(G - Akz,-_l), 1<i<m.
k
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Here, Ay is greater than or equal to the largest eigenvalue of A; which is the stiffness matrix of a;
in the conforming finite element space Wy, and m is an integer to be determined later. The
coarser-grid correction ¢ € Wj._; is obtained by applying the (k — 1)-level iteration 1 time. In other
words, it is the V-cycle multigrid method. More precisely,

g = CMG(k-1,0,G)
where G € W} _, is defined by G(v) := G(If_v) — ax(zm, If_v) for all v € Wj_;.

The nonconforming multigrid algorithm of this paper is as follows: The knax-level iteration with
initial guess 2 yields NC-CMG (kmax, 20, F') as a nonconforming approximate solution to the
following problem.

Find z € V;_,, such that

ak, (2,v) = F(v) = /va Yv € Vi, (12)

For kmax = 1, NC-CMG(1, zy, F) is the solution obtained from a direct method.

For kpax > 1,

Smoothing Step: the approximation z, € Vj is constructed recursively from the initial guess zo

and the equations
1

Akmlx

Zi = zi—1 + (F - Akm“zi—l), 1<:<m. (13)

Here, Ay, is greater than or equal to the largest eigenvalue of Ay, which is the stiffness
matrix of ai,,, in the nonconforming finite element space V,,,.

Correction Step: The coarser-grid correction ¢ € Wj_; is obtained by applying the (kmax — 1)-level
conforming iteration 1 time. More precisely,

g = CMG(kmax — 1,0, F)
where F € W)___, is defined by F(v) := F(If_v) — ak(zm, If_;v) for all v € Wi_1.

Put
NC-CMG (kmax, 20, F) = zm + Ik"‘“_lq.

max
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4. ESTIMATE OF CONVERGENCE RATE

Now, we can proceed with the well-known analysis of the conforming multigrid method in [2].

Define the linear mapping J: V; — V; by

Jw:E’-:Vi(l_/\

Here )\/’s are the eigenvalues of ax. The smoothing step (13) amplifies the error e; = z — z; by J, i.e.,
ei = Je;_;. Note that J is a self adjoint and semidefinite operator with respect to the energy norm.

Ai

max

)’(/),' forw = EV,"I,b,'.

Define the weaker seminorm

[w]? =\ (1 - A/\i )u? for w =Y vi;.

max

From (7) and (8) we know ||w||} = YA} and |w| < |jw]|s. Define the ratio

pmy={yWMMﬁ w0,

ifw=20
It can be regarded as a measure for the smoothness of w € V; because for a smooth function the
coefficient v; for small \;’s dominate and |w| & [|w]|s.

Lemma 2 Given w € Vi put p = p(J™w). Then

7™ wllx < p™lwlls-

Proof. Similar to the proof of Lemma 4.3. in [2]. O
Let g (€ Wi_,) be the exact coarser-grid correction i.e.
ak-1(g, v) = F(v) — ax(zm, v) Yo € Wi_;.

Define
Qenm:=¢€n—7

Then @ is the ay-orthogonal projector from V; into Wi .. Note that § is ax-orthogonal projection
of e,, into Wj_;.

Lemma 3 Given w € V; we have
1Qulx < min {1, 0\ = p(w)} folv.
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Proof. For w = Y vithi, we have

RN SV IS h (5
= )‘1 ZAng: :

max Amax

Ai) g

lellz -

Tt follows from Lemma 1 that [|Qu]1,x < Chllwlla,» This and the estimate (6) for Amax imply

1Qult, < ChAmax(lwll s — lwl’)
< C(lwll 4 — 1wl
C(1 - p(w))lwlli x

Moreover, since Q is an orthogonal projector, we have
1Qui, < min {1,0y1 = plw)} ol O

We are now (as in [10]) in a position to define three multigrid iterative schemes for the solution

of (12).

1. the symmetric scheme NC-CMGVj: symmetric smoothing NC-CMG scheme
9. the coarse-to-fine cycle NC-CMG/: postsmoothing NC-CMG scheme
3. the fine-to-coarse cycle: NC-CMG\: our NC-CMG scheme.

In particular, we have[10]

|NC-CMG/ ||k = | NC-CMG\i|x,
|NC-CMG Vil = || NC-CMG\il[} -

The symmetrical method NC-CMGV enables us to use estimates with respect to the energy norm
and to apply a duality argument.

Lemma 4 The multigrid algorithm NC-CMGVj has a convergence factor
|NC-CMGVillx < gmas, o™ (e + (1 - ) min(1, OT1 ~ )}, (14)

with respect to the energy norm. € is the error in (k — 1)-level CMGV)._, and the constant C is
independent of k and m.
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We note that the right-hand side of (14) is a monotone function of € due to the cut-off induced
by the min-operation which is contained in the expression.

Proof.
Zmit =2m +q+ew’ (ie]lg— gl < €llglls)
with some w’ € Wj_;. Hence the error is
€m+1 = €m — G — ew' = Qe — ew'.

Since Qep, is orthogonal to Wy_; and w’ € Wj_;, we get

IQem —w'lli = [Qemllk+ 1wl < |1Qemllk + 1]l (15)

Qemllk + (I — Qemllk = llemll3 - (16)
In order to estimate the final error ezm+1 = J™em 1, we use a duality argument:

llezm+1]|x = supy a(ib, e2m+1)/||w]|s. Note that (16) , @* = @ and Cauchy-Schwarz’s inequality
imply

IA I

ax(W, e2m+1) = ax(d, J™(Qem — ew'’))

ax(J™b, (1 — €)Q%em + €(Qem — w"))

(1 = e)ar(I™d, Q%em) + €| T™b|lkllem|lx

(1 = QI™ ][k |QT ™ol + €| ™| ]| T™eo]|x

[(1 = NQI™ DI} + el T™BIF*[(1 — )| QT ™eo|| + €]} T ™eo]| 2]/

IANINIA I

Given w € Vi by the Lemmas 2 and 3 it follows that
(1 = 9lQI™wllk + el T™w|} < p*™{e + (1 — €) min(1, C[1 - p])}w|},
where p = p(J™w). Hence

lle2m ||k < max p"™{e+ (1 — €)min(1,C[1 — p])}|leo][x. O

Theorem 5 If ||CMG\,_1||x-1 < 6'/? where %ﬁ{ <6<, then

INC-CMG\4||x < 6'2.

Proof. We conclude from Lemma 4,
INC-CMGVil = gmax p*™{8 + (1 - §) min(1,C[1 - p])},
because ||CMGVi_1|[x-1 = ||CMG\¢-1|l}_; < é. Maximum & is attained at p = 1 when 6 > 55—

INC-CMG\i|x = [NC-CMGV;|l,* < 6. O
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Table I: Number of Grid = 8 ie. h =1/8

| S-NCMG M-NCMG NC-CMG
smoothing || iter time(sec) | iter time(sec) | iter time(sec)
1 4 909 | 3 788 | 3 233
2 3 689 2 523 2 .156
3 2 A1) 2 540 2 170
4 2 483 2 .549 2 A77

Since the conforming multigrid method with the V-cycle and arbitrary smoothing step is convergent

we can choose & such that 1 > § > 75— and ||CMG\s-1||x-1 < 672,

5. EXPERIMENTAL RESULTS

We implement the standard nonconforming multigrid algorithm S-NCMG in [4], the modified
standard nonconforming multigrid algorithm M-NCMG in (3] and NC-CMG with the V-cycle for
the Laplace’s equation

—Au = -1 in = unit square,

u = 0 on Of.

Let {¢%,..., ¢k} be the basis of Vi such that each ¢% equals 1 at exactly one midpoint and equals
0 at all other midpoints. The stiffness matrix representing ax(-,+) with respect to this basis of
nonconforming space has at most five entries per row. In the conforming case, the stiffness matrix
has again at most five entries per row. Therefore z,, can be obtained from z, by iterating a sparse
band matrix. We use the Gershgorin theorem in order to get the bounds of the maximum
eigenvalues. These are the rough bounds so that the convergence rate is not optimal, but there is a
trade-off because finding the exact maximum eigenvalue costs more. Note that the matrix for If_,
has again at most five entries per row.

We take an initial guess zo = 0. The programs execute the multigrid iterations until the discrete
energy norm of the real error is below the tolerance 1/(number of basis) for various mesh size and
the number of smoothing. The real solution comes from the SSOR preconditioning conjugate
gradient method for the five point finite difference scheme in which the difference of two consecutive
solutions is less than the tolerance 10~° in the descrete I, sense. The experiments reported here
were run in double-precision arithmetic on CM-5 Vector Units which has 32K processors.

There are many ways to measure the performance of a parallel algorithm running on a parallel
processor(see [9]). The most important and commonly used metric is the elapsed cpu time to run a
job on a given machine even though it depends on how to optimize the program. We used the
power method to get the rate of convergence. In the Table V-VIII the rate of convergence of
S-NCMG and M-NCMG is slightly smaller or larger than the rate of convergence of NC-CMG.
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Table II: Number of Grid = 16 i.e. h = 1/16

S-NCMG M-NCMG | NC-CMG
smoothing || iter time(sec) | iter time(sec) | iter time(sec)
1 7 2604 5 2089 5 .766
2 4 1.526 3 1.187 3 481
3 3 1.183 3 1.247 3 512
4 3 1.212 3 1.240 2 .360

Table III: Number of Grid = 32 i.e. h = 1/32

S-NCMG M-NCMG NC-CMG
smoothing || iter time(sec) | iter time(sec) | iter time(sec)
1 10 6.037 7 4.294 7 1.625
2 6 3.723 | 5 3.163 | 4 970
3 5 3.196 | 4 2573 4 1.034
4 4 2641 3 1975 [ 3 .832

Table IV: Number of Grid = 64 i.e. h = 1/64

[ SNCMG | M-NOMG | NC-CMG
smoothing || iter time(sec) [iter time(sec) | iter time(sec)
1 14 16.668 | 10 11.879 9 2.874
2 8 9.560 7 8.396 5 1.692
3 6 7.196 5 6.059 4 1.447
4 ) 6.200 4 4.987 4 1.544

Table V: Number of Grid = 8 i.e. h = 1/8

' S-NCMG M-NCMG NC-CMG
smoothinﬂtrate of conv. | rate of conv. | rate of conv.
1 .903 903 .906
2 815 815 .820
3 736 .736 .742
4 .665 .665 672
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Table VI: Number of Grid = 16 i.e. h = 1/16

S-NCMG M-NCMG NC-CMG
| smoothing || rate of conv. | rate of conv. | rate of conv.
1 [ 904 904 910

2 817 818 .829
3 739 739 754
4 .668 .669 .687

Table VII: Number of Grid = 32 i.e. h = 1/32

S-NCMG M-NCMG NC-CMG
smoothing || rate of conv. | rate of conv. | rate of conv.
1 ! 904 904 911
2 818 818 .830
3 740 740 157
4 .669 .669 689

Table VIII: Number of Grid = 64 i.e. h = 1/64

S-NCMG M-NCMG NC-CMG
smoothing || rate of conv. | rate of conv. | rate of conv.
1 904 .904 911
2 939 818 830
3 .888 740 197
4 73 .669 .690
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Figure 1: Nonconforming vs. conforming.

In Figure 1, (A) and (B) represent the location of the nodal basis of nonconforming finite
elements and conforming finite elements, respectively. Squares represent the basis in Vi_; or Wi_;
and circles represent the basis in Vi or Wy. In the correction step the centered black square is
communicating with the black circles around it. Therefore S-NCMG and M-NCMG need further
communications. Since the performance is determined mainly by the communication time in a
massively parallel machine like CM-5, S-NCMG and M-NCMG require more cpu time than
NC-CMG. 1t is shown in tables I-IV. Moreover NC-CMG does less computation and is easier to
implement because the number of the basis of V), is approximately three times of that of Wy and
Wi-1 C W
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SUMMARY

Several iterative algorithms based on multigrid methods are introduced for solving linear
Fredholm integral equations of the second kind. Automatic programs based on these algorithms
are introduced using Simpson’s rule and the piecewise Gaussian rule for the numerical
integration.

INTRODUCTION

Several multigrid iterative methods based on the Nystréom method are applied for the fast
solution of the large dense systems of equations that arise from the discretization of Fredholm
integral equations of the second kind. We will consider the linear Fredholm integral equation of
the second kind,

Az(s) — /D k(s, t)e(t)dt = y(s), se€ D (1)

with D a bounded close domain, and y€ X where X is the underlying Banach space. Necessary
assumptions are

(i)  k(s,t) is such that the associated integral operator K is compact from X into X
(i) A is not an eigenvalue of K and A # 0

The Nystrom method for solving (1) uses some type of numerical integration to obtain the
approximating equation

Aai(s) = Yo ag(s)alts) = y(s), s €D @)

the nodes ¢,1,....,t,, are in D, and z;(t) = z(¢). The weights a;(s) can be defined in a variety of
ways, depending on the smoothness and form of the kernel function. If k(s,t) and z(t) are
reasonably smooth, usually a;(s) = w;k(s,t;), where
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is a numerical integration formula. Let the numerical integration operator K; be defined by

Kiz(s) = ij (s,t;)z(t;), s€D (4)

Using (2) and (4), (1) approximated by the linear system

Azy(t;) Ewi (i, t)zi(t;) = y(t:) (5)
We will denote (1) and (5) symbolically as -

A=—K)z=y (6)

and

A=Kz =y (7)

respectively. Our discussion is based on the convergence of a sequence of approximations to the
unique solution of (1).

In finding numerical solutions for equations (1), the system (5) is too large to be solved
directly. The purpose of this paper is to consider some iterative variants of (4). The basic
assumptions needed in our algorithms are given in section 2. In section 3, linear iterative
algorithms are given based on Simpson’s rule and piecewise Gaussian quadrature rule for the
numerical integraion formulae. And in the section 4, we include numerical examples.

BASIC ASSUMPTIONS

The methods will be defined and discussed using the abstract formulation of Anselone [1] and
Atkinson [3], [4] for families of collectively compact operators.

~ Let X;,1=10,1,2....;be finite-dimensional subspaces of the Banach space X and let
P, 1=0,1,2, ..., be a bounded projection operator from X onto X;. We need the following
assumptions for {X;} and {P:}

(ADXoC X1 C.... Xy CX
(A2) lim ||f — Pif|| = 0 forall f € X
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The sequence {X;} is thought as being associated with a sequence of decreasing meshsizes {h,}
with llm h; = 0. Corresponding with this sequence {h;},we approximate K by a sequence of

operators {Ki}, K; : X — X. In multigrid iteration, the subscript ! is called "level”.The
hypotheses on {K;: !> 1} and K are as follows.

(A3) K and Kj,! > 1 are linear operators on the Banach space X into X.
(A4) K1z — Kz as n — oo, for all z € X.
(A4) {K.} is a collectively compact family of operators.

The following is a consequence of the assumptions (A3) - (A5):
Lemma 1 Assume (A3) - (A5). Then with n defined as in (3)
(i) K is compact

(1t) (K — K))K|| and ||( K — K{)K)|| converge to zero as n — 00
(111) If a; = sup sup ”( ( — K, K., then. hm a=0

Proof. See Atkinson [4].

Lemma 2 If (A — K)™! exists, then
(A — K})7! eaists for sufficiently large I, say N(}), and is uniformly bounded by c;(A) and

e — @l < () |1Ke - Kiell, 12 NV
where z; = (A — K);)™!

Proof. See Atkinson [4].

This shows z; — z and gives a rate of convergence.

LINEAR ITERATIVE METHODS

Multigrid Methods

Assume that z,0 denotes a approximate solution of (7) with residual

di=y—(A—K)zip (8)

Then improve on the accuracy by writing

Ty =Ti0+ 8 (9)

where the correction & satisfies the residual correction equation
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(A = K6 = d, (10)

correction equation (10) exactly. Thus we may write

§ = Byd, (11)
where B denotes a bounded linear operator approximating (A — K;)~'. By (??) and (9) together
with (11), we obtain

T = [/\ — B((/\ — K[)]ivl,o + By, (12)

as the new approximate solution to (7). The equation (11) can be represented well by means of
coarser grid functions

()\ — I([-])(S]_l = d[_l (13)

where d;_yis chosen reasonably and depends linearly on d;. If r : X; — X;_; is the restriction

mapping, then
d1_1 = Td[ (14)

Having defined d;_, by (14), é;-1 is obtained using (11) at level / —1. Having obtained é;-;which
is defined only on the coarse grid level, we need to interpolate this coarse-grid function by

S] = p51_1 (15)

where p describes the prolongation of a coarse grid function to a fine grid function.

We note here that the choice of the prolongation p in (15) must be small enough to satisfy
|l —pr| <Ch (16)

where the consistency order 7 depends on the discretization. (e.g. on the order of the quadrature
formula). For the restriction operator r, we will consider both trivial injection and Nystrom type
restriction.

Our automatic algorithm is based on the following multigrid iteration which is given as a
recursive procedure.
Multigrid iteration for solving (A — Kj)z1 =y
Procedure Multigrid (I, zi,y) (17)

if | =0 then
solve zg = (A — Ki)7 1y

otherwise
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T = 3Kz + 9]

d; = (I-— Kl).i[ -y

di-y =rd

repeat the Procedure Multigrid with (I — 1,811, di—1)

:It}ww = .’EI bt p51_1

We now give some basic results of the multigrid algorithm (17) that are used in our automatic
algorithm.

Let ¢ be the contraction number of the multigrid iteration employed at level k

i o] < 6 e - e

Then it is known that {¢x} are uniformly bounded by some ¢ < 1.

Let

= max Ck (19)

where [ is the maximum level in (17). The relative discretization error, the difference between z
and z,_,, is often estimated by

|Bzie-1 — ]| < Cihg

for 1 <k<lI (20)
where p is a prolongation operator and 7 is the consistency order.
Theorem 3 Assume (20) and .
(' <1 (21)
with
hiy]”
2= 0% [T]
then the i th iteration of the multigrid procedure (17) at level k results in Iy and satisfies the
error estimate
2k — zel| < C3CihyT
for 0<kLI (22)
where
C:‘
Cy = ——— 23
PTGyl (23)
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Proof. See Hackbush [11].

Theorem 4 Assume the validity of (22) and suppose “£=1 " L < 7 then the 1 th iteration of the
multigrid procedure (17) at level k results in &y satzsﬁes the error estimate

& = 2l < Ciloe — 2] (24)
where (2 — 1)
“= T (%)

Proof. See Hackbush [11].
Automatic Algorithms

The automatic algorithm (i in (18) is used to estimate the iteration error. Then together
with the discretization error the global error in the solution is estimated. Often (i is estimated by

l i+l

“T

i (26)
e
Then

-
”a:k -z

e 27)

is used to estimate the iteration error. Thus at any level, a minimum of two iteration is required
to estimate the iteration error. However, (24) together with (25) can be used to estimate ( using

iteration error

(28)

discretization error

and it will enable us to estimate (27) with only one iteration.

Our first algorithm is based on Simpson’s rule with double the node points as the level
increases, i.e. dimension of the linear system at a level [ is 2+! + 1. In this case we have C; = 16
n (21). Thus by the condition (21), if { < 55 the estimates in (22) holds with i=1, i.e. only one
multigrid iteration per level. The result is computa,tlonal savings. As the level increases the
amount of computation increases, so that there is a significant time savings in performing only one
iteration as the dimension of the linear system being solved becomes larger. Moreover (; in (18)
goes to zero as the level k increases, which means that after a certain level k, (4 becomes so small
that the iteration error becomes much less significant than the discretization error, hence more
accurate estimation of it is not needed. Thus one iteration is sufficient at this stage.
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The second algorithm is based on the piecewise Gaussian quadrature rule for the numerical
integration scheme. We adapt the iteration error estimation scheme discussed earlier.

For simplicity we use h; = b'z‘—,“ for I = 1,2,... This means that we reduce the length of each
subinterval by half as the level increases. Suppose at some level [, we have a partition

Qi={a=g¢p<q<..<gn="b} (29)
with

g=a+1*xh for 1=0,1,2,....m

and m; = 2' :=number of subintervals, forl=0,1,2,....

Then
[ 7@t = 33 fgi +hi) (30)

=1

where

1 P )
| s =y, 1) (31)
Jj=1
is the Gaussian quadrature rule on [0,1] with p node points.

Unlike Simpson’s rule, we do not have nested node points. In the following algorithm, both
restriction and prolongation are done with Nystrom type interpolation.

Procedure Multigrid with piecewise Gaussian (I, z,y) (32)

if I = 0 then
solve o = (A — Ko) 1y
otherwise
T = ;[Kizi + 9]
di=A-K)z;—y = Kz, — K3,
di—y = r(Kiz; — Ki3;)
repeat the Procedure Multigrid with (I — 1,8;-1,di-1)

P =z — pbi_y

Nystrom type interpolations as in the procedure (32) are costly. Each interpolation involves
O(n}) multiplications at each level. However this can be improved as suggested in our conclusion
later.

The following theorem which is due to Atkinson-Potra [7] gives the theoretical iterative rate of
convergence for piecewise Gaussian quadrature with Nystrdm type interpolation. We will assume
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that the kernel k(s, ) belongs to the class G(e,v). This means that the kernel k(s, ¢) has the
following properties:

(Gl1)  Define
U, = {(s,t) |a<s <t < b}
U, = {(s,t) |[a <t < s < b}
Then there are functions k; € C*(¥;),7 =1,2
with
k(s,t) =ki(s,t), (s,t) €Wy, t#s
k(sat) =k2(3’t), (Sat) P
(G2)  If 5> 0, then k(s,t) € C"([a,b] x [a,8]). If ¥ = —1, then the kernel k(s,t) may have a
discontinuity of the first kind along the line t = s

Theorem 5 Assume that k(s,t) € G(a,v). Then solve the Nystrom equation

N
zi(s) = Z:w,-k(s,t,-)x,(tj) + y(s) (33)

using piecewise Gaussian quadrature rule with p node points in subintervals by first
obtainning zi(t1), ...., zi(tn) as a solution of the linear system

N
zi(t) = D wik(ti, t)zi(t;) + y(t) (34)
i=1
then using (33) as an iterpolation formula gives an error estimate

lz = z.|| = O(~") (35)
where w = min{e, 2p,y + 2}.

Proof. See Atkinson-Potra [7] for the case p=r+1.

Finally to determine i, the needed number of iteration at any level I, use (24) and (25) with
T = 2p,hence C; = 2%,

Automatic Implementation

Our automatic implementation is divided into two stages based on the results from the
iteration method. In stage 1, (A — K )Tm = y is solved directly, and then an attempt is made to
solve (A — Kj)z; =y for 1 > m, iteratively. If the rate of convergence is sufficiently rapid then
the stage 2 is entered. Otherwise m is replaced by  and the stage 1 is repeated. In stage 2, the
value of m will serve as the coarsest grid level in the multigrid procedure (17) and solve
(A — K;)z; = y iteratively until termination of the algorithm. The iteration procedure attempts to
use the minimum number of iterates such that once the iterative solutions satisfy a certain criteria
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we will try to estimate the rate of convergence asymptotically, which enables the estimation of the
rate of convergence with only one iteration per level. As shown in our numerical examples, this
scheme results in computational savings at finer grid levels.

The initial guess for an iteration of the higher level is the interpolation of the solution of the
preceding level which may have been obtained either directly or iteratively. The error |z — zm]|
and ||z — z/|| in stages 1 and 2, respectively, are monitored continuously, regardless of whether the
iteration method is being used or not. Thus the multigrid iteration may not have been invoked
successfully before the attainment of an answer within the desired error tolerance.

In order to estimate the global error in the current solution, we need to monitor the
discretization error and the iteration error. For the iteration error estimation, (27) is used with
estimated ¢ in place of (;. In stage 1, a test is made to determine whether the speed of
convergence is sufficient to enter stage 2. If

¢ < [Ratio]'/? (36)

then the speed of convergence is adequate for stage 2. This requirment will usually insure that
only two iterates are needed to be calculated in stage 2 at any given level. The number Ratio is
the theoretical rate at which the error in z; should decrease when [ is increased to thg next level.
In our case, since we are doubling the riode points as the level increases, Ratio = (%) with 7 =4
for Simpson’s rule and 7 = 2p for p points piecewise Gaussian quadrature in each subinterval.

For the discretization error estimation, we compute the rate at which the error is decreasing
for the current level. For each computed level {,

NumDE := ||z; — zi-1]| _ (37)
and let DenDE be the previous value of NumDE, if any. Then the rate is computed using

NumDE
— 38
DE DenDE (38)
Using this value of DE, we estimate the error z — zy,
DE
= | —— 9
Error [1 — DE] NumDE (39)

which is a standard error estimate for sequences which are converging geometrically with a rate
DE. Having estimated Error as in (39), we use the final test

Error < ¢ (40)

with € a desired error tolerance supplied by the user.

To ensure that only needed accuracy in z, is computed, we want to test

iteration error < quadrature error (41)
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This is done by

ot < () (2R -] <4z>

The test (42) is obtained by using (41) and the approximations

e =il = (25 ) [+ ~ =] (43)

o - <87 < (l_ ) =51 ()

If the test (42) is not satisfied, then the new iterate is calculated, and (42) is tested again.
Once an iterate is acceptable according to (42), we check for accuracy in the most recently
computed iterate using (39) and (40).

NUMERICAL EXAMPLES

The integral equation

b
z(s) = A / k(s,O)z(t)dt = y(s), a<s<b (45)
is solved with the kernel

k(s,t) = cos(mst)

on [0,1]. A variety of parameters A that are close to the dominant characteristic values (the
reciprocals of eigenvalues) are considered, as the equation becomes more difficult to solve as A
approaches characteristic values. The dominant characteristic value that we use in our example is

1.4278. The right hand function y(s) is so chosen that

z(s) = e"cos(7s), 0<s<1 (46)

Table I. The First Algorithm

Dimension (Level)

A Desired Estimated Actual Coarsest Finest
1.00 1.0E-6 6.82E-7 6.76E-7 3 (0) 65 (5)
140 10E4 1.62E5 160E5 5(1)  65(5)
1.43 1.0E-4 1.31E-5 1.31E-5 5 (1) 129 (6)
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In Table I, the Estimated column is computed using (39). As X approaches the characteristic
value of 1.4278, both the coarsest grid level and the finest grid level were increased. In Table II,
we give the iterative rate of convergence at each level, and the number of iterations performed at
each level is also given in parentheses. As noted in section 3, only one iteration is needed as the
level increases. Whenever only one iteration is performed at any given level, the iterative rate of
convergence is the maximum contraction number ¢ in (19) estimated using (24) and (25).

Table II. Iterative Rate of Convergence of The First Algorithm

Level

A Desired 1 7 2 ) 3
100 1.0E-6 2.10E-2 (2) 5.14E-2 (1) 2.03E-3 (1)
140 1.0E-4 2.10E-1(2) 5.31E-2(2) 7.57E-3 (2)
143 1.0E-4 - 1.44E-1 (2) 1.44E-2 (2)

4 5 6
1.00  1.0E-6 3.40E-3 (1) 3:80E-3 (1) -
140 1.0E-4 593E-2 (1) 3.79E-3 (1) -
143 10E-4 440E-2 (1) 3.75E-3 (1) 3.89E-3 (1)

For the second algorithm, the coarsest level corresponds to two subintervals. In order to give a
reasonable comparison with the first algorithm, we first give the results with 2 node points in each
subinterval. Thus the quadrature order coincides with that of the first algorithm.

Table ITI. The Second Algorithm with p=2

Dimension (Level)
A Desired Estimated Actual Coarsest Finest
1.00 10E-6 68257 6.76E7 4(0) 64 (5)
140 1.0E-4  162E5 160E-5 4(0) 64 (5)
143 1.0E-5 B8.74E-6 8.72E-6 4 (0) 128 (6)

In the next table, we have results from the second algorithm with more node points on each
subinterval. To show the superiority of the Gaussian quadrature rule, we give results for a smaller
desired error for A = 1.40 and \ = 1.43,

Table IV. The Second Algorithm with p=3,4
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Dimension (Level)

A p Desired Estimated Actual Coarsest Finest
140 3 1.0E8 1.95E-9  1.93E-9 6 (0) 96 (4)
143 3 1.0BE-8 3.97E-10 3.96E-10 6 (0) 192 (5)
143 4 1.0E8 6.52E-10 6.28E-10 8 (0) 64 (3)

Table V. Iterative Rate of Convergence of The Second Algoritm with p=3, 4

Level

A p Desired 1 2 3
T[40 3 10B8 1.00E4(2) 1.43E6(1) B8.84E-4 (1)
143 3 10E-8 1.39E-3(2) 1.04E-2(1) 2.10E-4 (1)
143 4 1.0E-8 9.35E-6(2) 2.55E-3 (1) 1.30E-5 (1)

4 5

140 3 1.0E-8 9.90E-4 (1) -
143 3 1.0E8 2.36E-4 (1) 2.42E-4 (1)

143 4 1.0E-8 - -

CONCLUSION

The piecewise Gaussian rule is superior to Simpson’s rule. However, as pointed out in section
3, restrictions and prolongations are done with Nystrdm type interpolation. And it involves O(n})
multiplications at each level without counting kernel evaluations. It appears that these
operations cause the bottleneck of our algorithms. We are in the process of applying the idea
suggested by Achi Brandt in [9] to our current algorithms which will reduce the operation count
by far. Our preliminary results appear to be promising, and progress is being made in developing
them further.

REFERENCES

1. Anselone, P.M.: Collectively Compact Operator Approzimation Theory, Prentice-Hall,
1971.

2. Atkinson, K.E.: The Numerical Solution of Fredholm Integral Equations of the Second Kind.
SIAM J. Numer. Anal., Vol. 4, 1967, pp. 337-348.

3. Atkiﬁson, K.E.: Tterative Variants of the Nystrom Method for the Numerical Solution of
Integral Equations. Numer. Math., Vol. 22, 1973, pp. 17-31.

342



10.

11.

12.

13.

14.

15.

16.

17.

18.

Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral
FEquations of the Second Kind, STAM, 1976.

Atkinson, K.E.; and Potra, F.A.: Projection and Iterative Projection Methods for Nonlinear
Integral Equations, SIAM J. Numer. Anal., Vol. 20, 1987, pp. 1352-1373.

Atkinson, K.E.; and Potra, F.A.: The Discrete Galerkin Method for Nonlinear Integral
Equations. J. Intgeral Eqns. and Appl., Vol. 1, no. 1, 1988, pp. 17-54.

. Atkinson, K.E.; and Potra, F.A.: On the Discrete Galerkin Method for Fredholm Integral

Equations of the Second Kind, IMA J. Numer. Anal., Vol. 9, 1989, pp. 385-403.

Brandt, A.: Multi-level Adaptive Solutions to Boundary-value Problems. Math. Comp., Vol.
31, 1977, pp. 333-390.

Brandt, A.: Multilevel Computations of Integral Transforms and Particle Interaction with
Oscillatory Kernels. Comp. Phy. Comm., Vol. 65, 1991, pp. 24-38.

Chatelin, F.; and Lebbar, R.: Superconvergence Results for the Iterated Projection Method
Applied to Fredholm Integral Equations of the Second Kind and the Corresponding
Eigenvalue Problems, J. Int. Eqns. Vol. 6, 1984, pp. 71-91.

Hackbush, W.: Multigrid Methods and Applications, Springer-Verlag, 1985.

Hemker, P.W.; and Schippers, H.: Multiple Grid Method for the Solution of Fredholm
Integral Equations of the Second Kind. Math. Comp., Vol. 36, 1981, pp. 215-232.

Hashimoto, M.: A Method of Solving Large Matrix Equations Reduced From Fredholm
Integral Equations of the Second Kind. J. Assoc. Comp. Mach., Vol. 17, 1970, pp. 629-636.

Kantorovich, L.; and Akilov, G.: Functional Analysisin Normed Spaces, Pergamon Press,
1964.

Kress, R.: Linear Integral Equations, Springer-Verlag, Applied Math Sciences 82, 1989.

Schippers, H.: The Automatic Solution of Fredholm Equations of the Second Kind. Report
NW 99/80, Mathematisch Centrum, Amsterdam 1980.

Schippers, H.: Application of Multigrid Methods for Integral Equations to Two Problems
from Fluid Dynamics. J. of Comp. Physics, Vol 48, 1982, pp. 441-461.

Stetter, H.J.: The Defect Correction Principle and Discretization Methods, Numer. Math.,
Vol. 29, 1978, pp. 425-443.

343






N94-2 3697
AN OBJECT-ORIENTED APPROACH FOR PARALLEL SELFK A A'PT B
MESH REFINEMENT ON BLOCK STRUCTURED GRIDS'

S -2
Max Lemke? and Kristian Witsch 2 Y &
Mathematisches Institut der Universitat Diisseldorf, Germany
)97/56

Daniel Quinlan? 5
Computational Mathematics Group, University of Colorado, Denver P - /

- SUMMARY

Self-adaptive mesh refinement dynamically matches the computational demands of a solver for
partial differential equations to the activity in the application’s domain. In this paper we present
two C++ class libraries, P++ and AMR++, which significantly simplify the development of
sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory
architectures. The development is based on our previous research in this area. The C++ class
libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement
applications into those of parallelism, abstracted by P++, and adaptive mesh refinement,
abstracted by AMR++. P++ is a parallel array class library to permit efficient development of
architecture independent codes for structured grid applications, and AMR++ provides support for
self-adaptive mesh refinement on block-structured grids of rectangular non overlapping blocks.
Using these libraries the application programmers’ work is greatly simplified to primarily specifying
the serial single grid application, and obtaining the parallel and self-adaptive mesh refinement code
with minimal effort.

Initial results for simple singular perturbation problems solved by self-adaptive multilevel
techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++
environment, are presented. Singular perturbation problems frequently arise in large applications,
e.g. in the area of computational fluid dynamics. They usually have solutions with layers which
require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

INTRODUCTION

The purpose of local mesh refinement during the solution of partial differential equations
(PDEs) is to match computational demands to an application’s activity: In a fluid flow problem this
means that only regions of high local activity (shocks, boundary layers, etc.) can demand increased
computational effort; regions of little flow activity (or interest) are more easily solved using only
relatively little computational effort. In addition, the ability to adaptively tailor the computational
mesh to the changing requirements of the application problem at runtime (e.g. moving fronts in
time dependent problems) provides for much faster solution methods than static refinement or even
uniform grid methods. Combined with increasingly powerful parallel computers that are becoming
available, such methods allow for much larger and more comprehensive applications to be run. With
local refinement methods, the greater disparity of scale introduced in larger applications can be
addressed locally. Without local refinement, the resolution of smaller features in the applications
domain can impose global limits either on the mesh size or the time step. The increased
computational work associated with processing the global mesh cannot be readily offset even by the
increased computational power of advanced parallel computers. Thus, local refinement is a natural
part of the use of advanced massively parallel computers to process larger and more comprehensive
applications.

1Revised and shortened version of [10]. This research has been supported by the National Aeronautics and Space Ad-
ministration under grant number NASI-18606 and the German Federal Ministry of Research and Technology (BMFT)
under PARANUSS, grant number ITR 900689.

2Part of this work belongs to the author’s dissertation.
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Our experiments with different local refinement algorithms for the solution of the simple
potential flow equation on parallel distributed memory architectures (e.g. [8]) demonstrates that,
with the correct choice of solvers, performance of local refinement codes shows no significant sign of
degradation as more processors are used. In contrast to conventional wisdom, the fundamental
techniques used in our adaptive mesh refinement methods do not oppose the requirements for
efficient vectorization and parallelization. However, the best choice of the numerical algorithm is
highly dependent on its parallelization capabilities, the specific application problem and its adaptive
grid structure, and, last but not least, the target architectures’ performance parameters. Algorithms
that are expensive on serial and vector architectures, but are highly parallelizable, can be superior
on one or several classes of parallel architectures.

Our previous work with parallel local refinement, which was done in the C language to better
allow access to dynamic memory management, has permitted only simplified application problems
on non block structured composite grids of rectangular patches. The work was complicated by the
numerical properties of local refinement, including self adaptivity and their parallelization
capabilities like, for example, static and dynamic load balancing. In particular, the explicit
introduction of parallelism in the application code is very cumbersome. Software tools for
simplifying this are not available, e.g., existing grid oriented communication libraries (as used in [6])
are far too restrictive to be efficiently applied to this kind of dynamic problem. Thus, extending this
code for the solution of more general complex fluid flow problems on complicated block structured
grids is limited by the software engineering problem of managing the large complexities of the
application problem, the numerical treatment of self-adaptive mesh refinement, complicated grid
structures, and explicit parallelization. The development of codes that are portable across different
target architectures and that are applicable to not just one problem and algorithm, but to a larger
class, is impossible under these conditions.

Our solution to this software difficulty presents abstractions as a means of handling the
combined complexities of adaptivity, mesh refinement, the application specific algorithm, and
parallelism. These abstractions greatly simplify the development of algorithms and codes for
complex applications. As an example, the abstraction of parallelism permits the development of
application codes (necessarily based on parallel algorithms as opposed to serial algorithms, whose
data and computation structures do not allow parallelization) in the simplified serial environment,
and the same code to be executed in a massively parallel distributed memory environment.

This paper introduces an innovative set of software tools to simplify the development of parallel
adaptive mesh refinement codes for difficult algorithms. The tools are present in two parts, which
form C++ class libraries and allow for the management of the great complexities described above.
The first class library, P++ (short summary in Section 2, details in [10]), forms a data parallel
superset of the C++ language with the commercial C++ array class library M++ (Dyad Software
Corporation). A standard C++ compiler is used with no modifications of the compiler required.
The second set of class libraries, AMR++ (Section 3), forms a superset of the C++/M++, or P++,
environment and further specifies the combined environment for local refinement (or parallel local
refinement). In Section 4 we introduce multilevel algorithms that allow for the introduction of
self-adaptive mesh refinement (Asynchronous) Fast Adaptive Composite Methods (FAC and
AFAC)). In Section 5, we present first results for a simple singular perturbation problem that has
been solved using FAC and AFAC algorithms being implemented on the bases of AMR++ and
P++ prototypes. This problem serves as a good model problem for complex fluid flow applications,
because several of the properties that are related to self-adaptive mesh refinement are already
present in it.

We are particularly grateful to Steve McCormick, without whose support this joint work would
not have been possible, and to the people at the Federal German Research Center Jiilich (KFA) for
their generous support in letting us use their iPSC/860 environment. In addition we would like to
thank everybody who discussed P++ or AMR++ with us or in any other way supported our work.
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P++, A PARALLEL ARRAY CLASS LIBRARY FOR STRUCTURED GRIDS

P++ is an innovative, robust, and architecture-independent array class library that simplifies
the development of efficient parallel programs for large scale scientific applications by abstracting
parallelism. The target machines are current and evolving massively parallel distributed memory
multiprocessor systems (e.g. Intel iPSC/860 and PARAGON, Connection Machine 5, Cray MPP,
IBM RS 6000 networks) with different types of node architectures (scalar, vector, or superscalar).
Through the use of portable communication and tool libraries (e.g. EXPRESS, ParaSoft
Corporation), the requirements of shared memory computers are also addressed. The P++ parallel
array class library is implemented in standard C++ using the serial M++ array class library, with
absolutely no modification of the compiler. P++ allows for software development in the preferred
serial environment, and such software to be efficiently run, unchanged, in all target environments.
The runtime support for parallelism is both completely hidden and dynamic so that array partitions
need not be fixed during execution. The added degree of freedom presented by parallel processing is
ex;iloi]ted by use of an optimization module within the array class interface. For detail, please refer
to [10].

Application class: The P++ application class is currently restricted to structured grid-oriented
problems, which form a primary problem class currently represented in scientific supercomputing.
This class is represented by dimensionally independent block structured grids (1D - 4D) with
rectangular or logically rectangular grid blocks. The M++ array interface, which is also used as the
P++ interface and whose functionality is similar to the array features of Fortran 90, is particularly
well suited to express operations on grid blocks to the compiler and to the P++ environment at
runtime.

Programming Model and Parallelism: P++ is based on a Single Program Multiple Data Stream
(SPMD) programming model, which consists of executing one single program source on all nodes of
the parallel system. Its combination with the Virtual Shared Grids (VSG) model of data parallelism
(a restriction of virtual shared memory to structured grids, whose communication is controlled at
runtime) is essential for the simplified representation of the parallel program using the serial
program and hiding communication within the grid block classes. Besides different grid partitioning .
strategies, two communication update principles are provided and automatically selected at
runtime: Overlap Update for very efficient nearest neighbor grid element access of aligned data and
VSG Update for general grid (array) computations. By use of local partitioning tables,
communication patterns are derived at runtime, and the appropriate send and receive messages of
grid portions are automatically generated by P4+ selecting the most efficient communication
models for each operation. As opposed to general Virtual Shared Memory implementations, VSG
allows for obtaining similar parallel performance as for codes based on the traditionally used explicit
Message Passing programming model. Control flow oriented functional parallelism until now is not
particuéarly supported in P++. However, a cooperation with the developers of CC++ ([4]) is
planned.

Summary of P++ Features:

e Object oriented indexing of the array objects simplifies development of serial codes by
removing error prone explicit indexing common to for or do loops.

e Algorithm and code development takes place in a serial environment. Serial codes are
re-compilable to run in parallel without modification.

® P++ codes are portable between different architectures. Vectorization, parallelization and data
partitioning are hidden from the user, except for optimization switches.

e P++ application codes exhibit communication as efficiently as codes with explicit message
passing. With improved C++ compilers and an optimized implementation of M++, single
node performance of C++ with array classes has the potential to approximate that of Fortran.
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Current State, Performance Issues and Related Work: The P++ prototype is currently
implemented on the bases of the AT&T C++ C-Front precompiler using the Intel NX-2
communication library (or, on an experimental basis, an EXPRESS-like portable communication
library from Caltech). Current versions are running on the Intel iPSC/860 Hypercube, the Intel
Simulator, SUN workstations, the Cray 2, and IBM PCs. The prototype contains all major concepts
described above. At several points, without loss of generality, its functionality is restricted to the
needs within our own set of test problems (3D multigrid codes and FAC JAFAC codes).

The feasibility of the approach has been proven by the successful implementation and use of our
set of test problems on the basis of P++, in particular, the very complex AMR++ class library. The
results that have been obtained with respect to parallel efficiency, whose optimization was one of the
major goals of the P++ development, are also very satisfying: Comparisons for P++ and Fortran
with message passing based test codes, respectively, have shown that the number of messages and
the amount of communicated data is roughly the same. Thus, besides a negligible overhead, similar
parallel efficiency can be achieved. With respect to single node performance, only little optimization
has been done. The major reason is that the used system software components (AT&T C++
C-Front precompiler 2.1, M++) are not very well optimized for the target machines. However, our
experiences with C4-+ array language class libraries on workstations and on the Cray Y-MP (in
collaboration with Sandia National Laboratories: about 90% of the Fortran vector performance is
achieved) are very promising: With new optimized system software versions, Fortran performance
can be approximated. Therefore, altogether, we expect the parallel performance for P++ based
codes to be similar to that obtained for optimized Fortran codes with explicit message passing.

AMR++, AN ADAPTIVE MESH REFINEMENT CLASS LIBRARY

AMR++ is a C++ class library that simplifies the details of building self-adaptive mesh
refinement applications. The use of this class library significantly simplifies the construction of local
refinement codes for both serial and parallel architectures. AMR++ has been developed in a serial
environment using C++ and the M++4 array class interface. It runs in a parallel environment,
because M++ and P++ share the same array interface. The nested set of abstractions provided by
AMR++ uses P++ at its lowest level to provide architecture independent support. Therefore,
AMR++ inherits the machine targets of P4+, and, thus, has a broad base of machines on which to
run. The efficiency and performance of AMR++ is mostly dependent on the efficiency of M++ and
P++, in the serial and parallel environments respectively. In this way, the P++ and AMR++ class
libraries separate the abstractions of local refinement and parallelism to significantly ease the
development of parallel adaptive mesh refinement applications in an architecture independent
manner. The AMR++ class library represents work which combines complex numerical, computer
science, and engineering application requirements. Therefore, the work naturally involves
compromises in its initial development. In the following sections, the features and current
restrictions of the AMR++ class library are summarized.

Block Structured Grids  Features and Restrictions: The target grid types of AMR++ are 2D
and 3D block structured with rectangular or logically rectangular blocks. On the one hand, they
allow for a very good representation of complex internal geometries introduced through local
refinement in regions with increased local activity. This flexibility of local refinement block
structured grids equally applies to global block structured grids that allow for matching complex
external geometries. On the other hand, the restriction to structures of rectangular blocks, as
opposed to fully unstructured grids, allows for the application of the VSG programming model of
P++ and, therefore, is the foundation for good efficiency and performance in distributed
environments, which is one of the major goals of the P++/AMR++ development. Thus, we believe
that block structured grids are the best compromise between full generality of the grid structure
and efficiency in a distributed parallel environment. The application class forms a broad cross
section of important scientific applications.
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In the following, the global grid is the finest uniformly discretized grid that covers the whole
physical domain. Local refinement grids are formed from the global grid, or recursively from
refinement grids, by standard refinement with hAgine = %hcoam in each coordinate direction. Thus,

boundary lines of block structured refinement grids always match grid lines on the underlying
discretization level. The construction of block structured grids in AMR++ has some practical
limitations that simplify the design and use of the class libraries. Specifically, grid blocks at the
same level of discretization cannot overlap. Block structures are formed by distinct or connected
rectangular blocks that share their boundary points (block interfaces) at those places where they
adjoin each other. Thus, a connected region of blocks forms a block structured refinement grid. It is
possible that one refinement level consists of more than one disjunct block structured refinement
grid. In the dynamic adaptive refinement procedure, refinement grids can be automatically merged,
if they adjoin each other.

l:} grid block

\ i i extended boundary
| 2.2

3.2 212

wummmm  block interface
212

*- CIDELD)YCED

G2>

(a) 3-level composite grid (b) adjoining (c) composite grid tree
grid blocks

Figure 1: Example of a composite grid, its composite grid tree, and a cut out of 2 blocks with their
extended boundaries and interface.

In Figure 1 (a), an example for a composite grid is illustrated: The composite grid shows a
rectangular domain within which we center a curved front and a corner singularity. The grid blocks
are ordered lexicographically: the first digit represents the level, the second digit the connected
block structured refinement grid, and the third digit the grid block. Such problems could represent
the structure of shock fronts or multi-luid interfaces in fluid flow applications: In oil reservoir
simulations, for example, the front could be an oil water front moving with time and the corner
singularity could be a production well. In this specific example, the front is refined with two block
structured refinement grids: the first grid on refinement level 2 is represented by grid blocks 2.1.1
and 2.1.2, and the second grid on level 2 by grid blocks 3.1.1, 3.1.2 and 3.1.3. In the corner on each
of the levels, a single refinement block is introduced.

For ease of implementation, in the AMR++ prototype the global grid must be uniform. This
simplification of the global geometry was necessary in order to be able to concentrate on the major
issues of this work, namely, the implementation of local refinement and self adaptivity in an
object-oriented environment. This restriction is not critical and can be eased in future versions of
the prototype. Aside from implementation issues, some additional functionality must be made
available:
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e For implicit solvers, the resulting domain decomposition of the global grid may require special

capabilities within the single grid solvers (e.g., multigrid solvers for block structured grids with
adequate smoothers, such as inter-block line or plane relaxation methods).

e The block structures in the current AMR++ prototype are defined only by the needs of local

refinement of a uniform global grid. This restriction allows them to be Cartesian. More
complicated structures as they result from difficult non Cartesian external geometries (e.g.,
holes; see Rll]) currently are not taken into consideration. An extension of AMR++, however,
is principally possible. The wide experience for general 2D block structured grids that has been
gained at GMD [11] can form a basis for these extensions. Whereas our work is comparably
simple in 2D, because no explicit communication is required, extending the GMD work to 3D
problems is very complex.

Some Implementation Issues: In the following, some implementation issues are detailed. They

also demonstrate the complexity of a proper and efficient treatment of block structured grids and
adaptive refinement. AMR++ takes care of all of these issues, which would otherwise have to be
handled explicitly at the application level.

e Dimensional independence and multi-indexing: The implementation of most features of
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AMR++ and its user interface is dimensionally independent. Being derived from user
requirements, on the lowest level, the AMR++ prototype is restricted to 2D and 3D
applications. This, however, is a restriction that can easily be removed.

One important means by which dimensional independence is reached, is multi-dimensional
indices (multi-indices), which contain one index for each coordinate direction. On top of these
multi-indices are index variants defined for each type of sub-block (interior, interior and
boundary, boundary only, ...), which contain multiple multi-indices. For example, for
addressing the boundary of a 3D block (non-convex), one multi-index is needed for each of the
six planes. In order to avoid special treatment of physical boundaries, all index variants are
defined twice, including and excluding the physical boundary, respectively. All index variants,
several of them also including extended boundaries (see below), are precomputed at the time
when a grid block is allocated. In the AMR++ user interface and in the top level classes, only
index variants or indicators are used and, therefore, allow a dimensionally independent
formulation, except for very low level implementations.

Implementation of block structured grids: The AMR++ grid block objects consist of the
interior, the boundary, an extended boundary of a grid block, and links that are formed
between adjacent pairs of grid block objects. The links contain P++ array objects that do not
consist of actual data, but serve as views (subarrays) of the overlapping parts of the extended
boundary between adjacent grid block objects. The actual boundaries that are shared between
different blocks (block interfaces) are very complex structures that are represented properly in
the grid block objects. For example, in 3D, interfaces between blocks are 2D planes, those
between plane-interfaces are 1D-line interfaces, and, further, those between line-interfaces are
points (zero-dimensional).

In Figure 1 (b), grid blocks 2.1.1 and 2.1.2 of the composite grid in Figure 1 (a) are depicted
including their block interface and their extended boundary. The regular lines denote the
outermost line of grid points of each block. Thus, with an extended boundary of two, there is
one line of points between the block boundary line and the dashed line for the extended
boundary. In its extended boundary, each grid block has views of the values of the original grid
points of its adjoining neighboring block. This way it is possible to evaluate stencils on the
interface and, with an extended boundary width of two, to also define a coarse level of the
block structured refinement grid in multigrid sense.

Data structures and iterators: In AMR++, the composite grid is stored as a tree of all
refinement grids, with the global grid being the root. Block structured grids are stored as lists
of blocks (for ease of implementation; collections of blocks would be sufficient in most cases).



In Figure 1 (c), the composite grid tree for the example composite grid in Figure 1 (a) is
illustrated.

The user interface for doing operations on these data structures are so-called iterators. For
example, for an operation on the composite grid (e.g., zeroing each level or interpolating a grid
function to a finer level), an iterator is called that traverses the tree in the correct order.
(preorder, postorder, no order). This iterator as arguments takes the function to be executed
and two indicators that specify the physical boundary treatment and the type of sub grid to be
treated. The iteration starts at the root and recursively traverses the tree. For doing an
operation (e.g. Jacobi relaxation) on a block structured grid, iterators are available, that
process the list of blocks and all block interface lists. They take arguments similar to those for
the composite grid tree iterators. T

Object-Oriented Design and User Interface: The AMR++ class libraries are customizable by
using the object oriented features of C++. For example, in order to obtain efficiency in the parallel
environment, it may be necessary to introduce alternate iterators that traverse the composite grid
tree or the blocks of a refinement region in a special order. This is implemented by alternate use of
different base classes in the serial and parallel environment. The same is true for alternate
composite grid cycling strategies as, for example, needed in AFAC, in contrast to FAC algorithms
(Section 4). Application specific parts of AMR++, such as the single grid solvers or criteria for
adaptivity, which have to be supplied by the user, are also simply specified through substitution of
alternate base classes: A pre-existing application (e.g., problem setup and uniform grid solver) uses
AMR-++ to extend its functionality and to build an adaptive mesh refinement application. Thus,
the user supplies a solver class and some additional required functionality (refinement criteria, ...)
and uses the functionality of the highest level AMR++ ((Self_)Adaptive_)Composite.Grid class to
formulate his special algorithm or to use one of the supplied PDE solvers. In the current prototype
of AMR++, FAC and AFAC based solvers (Section 4) are supplied. If the single grid application is
written using P++, then the resulting adaptive mesh refinement application is architecture
independent, and so can be run efficiently in a parallel environment.

The design and interface of AMR++ is object-oriented and the implementation of our
prototype extensively uses features like encapsulation and inheritance: The abstraction of
self-adaptive local refinement, which involves the handling of many issues (including memory
management, interface for application specific control, dynamic adaptivity, and efficiency), is
reached through grouping these different functionalities in several interconnected classes. For
example, memory management is greatly simplified by the object oriented organization of the
AMR-++ library: Issues such as lifetime of variables are handled automatically by the scoping rules
for C++, so memory management is automatic and predictable. Also, the control over construction
of the composite grid is intuitive and natural: The creation of composite grid objects is similar to
the declaration of floating point or integer variables in procedural languages like Fortran and C. The
user basically formulates a solver by allocating one of the predefined composite grid solver objects,
or by formulating it on the basis of the composite grid objects and associated iterators and by
supplying the single grid solver class.

Although not part of the current implementation of AMR++, C++ introduces a template
mechanism in the latest standardization of the language, which is only just beginning to be part of
commercial products. The general purpose of this template language feature is to permit class
libraries to access user specified base types. For AMR++, for example, the template feature could
be used to allow the specification of the base solver and adaptive criteria for the parallel adaptive
local refinement implementation. In this way, the construction of an adaptive local refinement code
from the single grid application on the basis of the AMR++ class library can become even simpler
and cleaner. The object-oriented design of interconnected classes will not be further discussed. The
reader is referred instead to [10] and Fr]x

Static and Dynamic Adaptivity, Grid Generation: In the current AMR++ prototype, static
adaptivity is fully implemented. The user can specify a composite grid either interactively or by

351



H*

block. Block structured local refinement regions are formed automatically by investigating
neighboring relationships. In addition, the functionalities for adding and deleting grid blocks under
user control are available within the Adaptive_Composite_Grid object of AMR++.

Recently, dynamic adaptivity has been a subject of intensive research. Initial results are very
promising, and some basic functionality has been included in the AMR++ prototype: Given a
Elobal grid, a flagging criteria function, and some stopping criteria, the

elf_Adaptive_Composite_Grid object contains the functionality for iteratively solving on the actual
composite grid and generating a new discretization level on top of the respective finest level.
Building a new composite grid level works as follows:

1. The flagging criteria delivers an unstructured collection of flagged points in each grid block.
For representing grid block boundaries, all neighboring points of flagged points are also flagged.

2. The new set of grid blocks to contribute to the refinement level (gridding) is built by applying
a smart recursive bisection algorithm similar to the one developed in [2]: If building a rectangle
around all flagged points of the given grid block is too inefficient, it is bisected in the longer
coordinate direction and new enclosing rectangles are computed. The efficiency of the
respective fraction is measured by the ratio of flagged points to all points of the new grid block.
In the following tests, 75% is used. This procedure is repeated recursively if any of the new
rectangles is also inefficient. Having the goal of building the rectangles as large as possible
within the given efficiency constraint, the choice of the bisection point (splitting in halves is
too inefficient because it results in very many small rectangles) is done by a combination of
signatures and edge detection. A detailed description of this method reaches beyond the scope
of this paper, so the reader is referred to [2] or [7].

3. Finally, the new grid blocks are added to the composite grid to form the new refinement level.
Grouping these blocks into connected block structured grids is done the same way as it is done
in the static case.

This flagging and gridding algorithm has the potential for further optimization: The bisection
method can be further improved, and a clustering and merging algorithm could be applied. This is
especially true for refinement blocks of different parent blocks that could form one single block with
more than one parent. Internal to AMR++, this kind of parent / child relationship is supported.
The results in Section 5, however, show that the gridding already is quite good. The number of
blocks that are constructed automatically is only slightly larger (< 10%) than a manual
construction would deliver. A next step in self-adaptive refinement would be to support time
dependent problems whose composite grid structure changes dynamically with time (e.g., moving
fronts). In this case, in addition to adding and deleting blocks, enlarging and diminishing blocks
must be supported. Though some basic functionality and the implementation of the general concept
is already available, this problem has not yet been further pursued.

Current State and Related Work: The AMR++ prototype is implemented using M++ and the
AT&T Standard components class library to provide standardized classes (e.g., linked list classes).
Through the shared interface of M++ and P++, AMR++ inherits all target architectures of P++.
The prototype has been successfully tested on SUN workstations and on the Intel iPSC/860, where
it has proved its full functionality with respect to parallelization. Taking into account the large
application class of AMR++, there are still several insufficiencies and restrictions, as well as a large
potential for optimization. For parallel environments, e. g., efficiently implementing self-adaptivity,
including load (re)balancing, requires further research. In addition, the iterators that are currently
available in AMR++, though working in a parallel environment, are best suited for serial
environments. Special parallel iterators that, for example, support functional parallelism on the
internal AMR++ level would have to be provided. Until now, AMR++ has been successfully used
as a research tool for the algorithms and model problems described in the next two sections.
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However, AMR++ provides the functionality to implement much more complicated application
problems.

Concerning parallelization, running AMR++ under P++ on the Intel iPSC/860 has proven its
full functionality. Intensive optimization, however, has only been done within P++. AMR++ itself
offers a large potential for optimization.

To the authors’ knowledge, the AMR++ approach is unique. There are several other
developments in this area (e.g. [11]), but they either address a more restricted class of problems or
are restricted to serial environments.

MULTILEVEL ALGORITHMS WITH ADAPTIVE MESH REFINEMENT

The fast adaptive composite grid method (FAC, [12]), which was originally developed from and
is very similar to the Multi-Level Adaptive Technique (MLAT, [3]), is an algorithm that uses
uniform grids, both global and local, to solve partial differential equations. This method is known
to be highly efficient on scalar or single processor vector computers, due to its effective use of
uniform grids and multiple levels of resolution of the solution. On distributed memory
multiprocessors, methods like MLAT or FAC benefit from their tendency to create multiple isolated
refinement regions, which may be effectively treated in parallel. However, for several problem
classes, they suffer from the way in which the levels of refinement are treated sequentially in each
region. Specifically, the finer levels must wait to be processed until the coarse-level approximations
have been computed and passed to them; conversely, the coarser levels must wait until the finer
level approximations have been computed and used to correct their equations. Thus, the
perallelization potential of these "hierarchical” methods is restricted to intra-level parallelization.

The asynchronous fast adaptive composite method (AFAC) eliminates this bottleneck of
parallelism. Through a simple mechanism used to reduce inter-level dependencies, individual
refinement levels can be processed by AFAC in parallel. The result is that the convergence rate for
AFAC is the square root of that for FAC. Therefore, since both AFAC and FAC have roughly the
same number of floating point operations, AFAC requires twice the serial computational time as
FAC, but AFAC allows for the introduction of inter-level parallelization.

As opposed to the original development of FAC and AFAC, in this paper, the modified
algorithms known as FACx and AFACx are discussed and used. They differ in the treatment of the
refinement levels. Whereas in FAC and AFAC, a rather accurate solution is computed (e.g., one
MG V-cycle), FACx uses only a couple of relaxations. AFACx uses a two-grid procedure (of
FMG-type) on the refinement level and its standard coarsening with several relaxations on each of
these levels. Experiments and some theoretical observations show that all of the results that have
been obtained for FAC and AFAC also hold for FACx and AFACx (see [14]). In the following, FAC

and AFAC always denote the modified versions (FACx and AFACx).

Numerical algorithms: Both FAC (MLAT) and AFAC consist of two basic steps, which are
described loosely as follows:

1. Smoothing phase: Given the solution approximation and composite grid residuals on each level,
use relaxation or some restricted multigrid procedure to compute a correction local to that level
(a better approximation is required on the global grid, the finest uniform discretization level).

2. Level transition phase: Combine the local corrections with the global solution approximation,
compute the global composite grid residual, and transfer the local components of the
approximation and residual to each level.

The difference between MLAT and FAC on the one hand and AFAC on the other hand is in the
order in which the levels are processed and in the details of how they are combined:
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e FAC and MLAT can roughly be viewed as standard multigrid methods with mesh refinement
and a special treatment of the interfaces between the refinement levels and the underlying
coarse level. In FAC and MLAT the treatment of the refinement levels is hierarchical. Theory
on FAC is based on its interpretation as a multiplicative Schwarz Alternating Method or as a
block relaxation method of Gauss-Seidel type.

FAC and MLAT mainly differ by their motivation. Whereas it is the goal of FAC to compute a
solution for the composite grid (grid points of the composite grid are all the interior points of
the respective finest discretization level), the major goal of MLAT is to get the best possible
solution on a given uniform grid (with using local refinement). Thus, in FAC, coarse levels of
the composite grid serve for the computation of corrections. Therefore, FAC was originally
formulated as a correction scheme (CS). The MLAT formulation requires a full approximation
scheme (FAS), because coarse levels serve as correction levels for the points covered by finer
levels. MLAT was first developed using finite difference discretization, whereas for FAC finite
volume discretizations were used. However, they are closely related and in many problems lead
to the same stencil representation. This is true except perhaps for the interface points, where
finite volume discretizations generally lead to conservative discretizations (FAC), whereas finite
difference discretizations do not (MLAT). Instead, in MLAT, usually a higher order
interpolation is used on the interface. Other than this exception, because of the modification of
the original FAC algorithm as discussed above, there is no difference in the treatment of the
refinement levels between the original MLAT algorithm and the modified FAC algorithm that
is discussed in this paper. It can be shown ([7]) that an FAS version of FAC with a special
choice of the operators on the interface is equivalent to the originally developed Multilevel
Adaptive Technique (MLAT).

e AFAC on the other hand consists of the same discretization and operators as FAC, but a
decoupled and asynchronous treatment of the refinement levels in the solution phase, which
dominates the arithmetic work in the algorithm. Theory on AFAC can be based on its
interpretation as an additive Schwarz Alternating Method or as a block relaxation method of
Jacobi type.

Theory in [121 shows that, under appropriate conditions, the convergence factors of FAC and
AFAC have the relation parac = /prac. This implies that two cycles of AFAC are roughly
equivalent to one cycle of FAC. If the algorithmic components are chosen slightly different than for
the convergence analysis or if applied to singular perturbation problems as discussed in the next
section, experiences show that AFAC is usually better than as suggested by the above formula: In
?everal cas)es, the convergence factor of AFAC shows only a slight degradation of the FAC rate

Section 5).

Parallelization - an Erample for the Use of P++/AMR++: By example, we demonstrate
some of the features of AMR++ and examples for the support of P++ for the design of parallel
block structured local refinement applications on the basis of FAC and AFAC algorithms.

In a parallel environment, partitioning the composite grid levels becomes a central issue in the
performance of composite grid solvers. In Figure 2, two different partitioning strategies that are
supported within P++4/AMR++ are illustrated for the composite grid in Figure 2. For ease of
illustration, grid blocks 2.2 and 2.3 are not included. The so-called FAC partitioning in Figure 2 (b)
is typical for implicit and explicit algorithms, where the local refinement levels have to be treated in
a hierarchical manner (FAC, MLAT,...). The so-called AFAC partitioning in Figure 2 (a) can be
optimal for implicit algorithms that allow an independent and asynchronous treatment of the
refinement levels. In the case of AFAC, however, it must be taken into consideration that this
partitioning is only optimal for the solution phase, which dominates the arithmetic work of the
algorithm. The efficiency of the level transition phase, which is based on the same hierarchical
structure as FAC and which can eventually dominate the aggregate communication work of the
algorithm, highly depends on the architecture and the application (communication / computation
ratio, single node (vector) performance, message latency, transfer rate, congestion, ...). For
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Figure 2: Parallel multilevel local refinement algorithms on block structured grids — an example for
the use of AMR++ and the hidden interaction of the P++ communication models.

determining whether AFAC is better than FAC in a parallel environment, the aggregate efficiency
and performance of both phases and the relation of the convergence rates must be properly
evaluated. For more detail, see [10] and [7]. Both types of partitioning are supported in the
P++/AMR++ environment.

Solvers used on the individually partitioned composite grid levels make use of overlap updates
within P++ array expressions, which automatically provide communication as needed. The
inter-grid transfers between local refinement levels, typically located on different processors, rely on
VSG updates. The VSG updates are also provided automatically by the P+ environment. Thus,
the underlying support of parallelism is isolated in P++ through either overlap update or VSG
update, or a combination of both, and the details of parallelism are isolated away from the AMR++
application. The block structured interface update is handled in AMR++. However,
communication is hidden in P++ (mostly the VSG update).

RESULTS FOR SINGULAR PERTURBATION PROBLEMS

Use of the tools described above is now demonstrated with initial examples. The adaptivity
provided by AMR++ is necessary in case of large gradients or singularities in the solution of the
PDE. They may be due to rapid changes in the right-hand side or coefficients of the PDE, corners
in the domain, or singular perturbations. Here, the first and the last case will be examined on the
basis of model problems.

Singularly perturbed PDEs represent the modelling of physical processes with relatively small
diffusion (viscosity) and dominating convection. They may occur as a single equation or within
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systems of complex equations, e.g., as the momentum equations within the Navier-Stokes or, in
addition, as supplementary transport equations in the Boussinesq system of equations. Here, we
merely treat a single equation. However, we only use methods that generalize directly to more
complex situations. Therefore, we do not rely on the direct solution methods provided by
downstream or ILU relaxations for simple problems with pure upstream discretization. The latter
are not direct solution methods for systems of equations. Further, these types of flow direction
dependent relaxations are not efficiently parallelizable in the case of only a few relaxations as is
usually used in multilevel methods. This in particular holds on massively parallel systems.
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Figure 3: Results for a singular perturbation problem: Plots of the error and composite grid, with
two different choices of the accuracy 7 in the self-adaptive refinement process.

Model Problem and Solvers: Numerical results have been obtained for the model problem

—eAu+au, +bu,=f  on Q=(0,1)

with Dirichlet boundary conditions on 8Q and & = 0.00001. This problem serves as a good model
for complex fluid flow applications, because several of the properties that are related to self-adaptive
mesh refinement are already present in this simple problem. The equation is discretized using

356



isotropic artificial viscosity (diffusion):

Ly = —epAp+aDeypu+bDyu with Ay = D,zhJE + Dﬁ,y
€ = max{s, Bh ma.x{lal, Ibl}/2}

The discrete system is solved by multilevel methods - MG on the finest global grid and FAC or
AFAC on composite grids with refinement. For the multigrid method, it is known that, with
artificial viscosity, the two-grid convergence factor (spectral radius of the corresponding iteration
matrix) is bounded below by 0.5 (for A — 0). Therefore, multilevel convergence factors converge to
1.0 with an increasing number of levels. In [5], a multigrid variant which shows surprisingly good
convergence behavior has been developed: MG convergence factors stay far below 0.5 (with three
relaxations on each level). Here, essentially this method is used, which is described as follows:

e Discretization with additional isotropic artificial viscosity using 8 = 3 on the finest grid m and
Bi-1=1/2 (8 +1/8;) for coarser grids l=m —1,m—2,...,

e MG components: odd/even relaxation, non-symmetric transfer operators corresponding to
linear finite elements. These components fulfil the Galerkin condition for the Laplacian.

Anisotropic artificial viscosity may also be used, but generally requires (parallel) zebra line
relaxation, which has not yet been fully implemented.

For FAC and AFAC, the above MG method with V(2,1) cycling is used as a global grid solver.
On the refinement levels, three relaxations are performed, and 8 = 3 is chosen on refinement grids.

Convergence Results: In Table 1, several convergence factors for FAC, AFAC, and, for
comparison, for MG are shown. The finest grids have mesh sizes of h = 1/64 or h = 1/512,
respectively. For FAC and AFAC, the global grid has the mesh size h = 1/32, the (predetermined)
fine block always covers 1/2 of the parent coarse block along the boundary layer. The following
conclusions can be drawn: -

e For MG, the results are as expected. In the case of FAC and AFAC, the choice of 3 has to be
further investigated. e ,

e V cycles are used; W or F cycles would yield better convergence rates but worse parallel
efficiency.

o If p(FAC) is small, the expected result p(AFAC) = \/p(F AC) can be observed, otherwise
p(FAC) = p(AFAC) < /p(FAC).

Poisson SPP:. =3 SPP: =1
h 1/64 | 1/512 | 1/64 | 1/512 || 1/64 | 1/512
MG-V || 0.14 | 0.14 | 0.17 | 0.30 || 0.18 | 0.50
FAC 0.17{ 0.18 | 0.30 | 0.65 || 0.30 | 0.80
AFAC || 040 | 0.41 || 041 | 0.67 | 045 | 0.95

Table 1: Convergence factors for a singular perturbation problem (SPP: a = b = 1,¢ = 0.00001) and,
for comparison, for Poisson’s equation.

Self- Adaptive Mesh Refinement Results: More interesting for the goal of this paper are
applications of the self-adaptive process. As opposed to the convergence rates, they do not depend
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only on the PDE, but also on the particular solution. The results in this paper have been obtained
for the exact solution
e(:z:—l)/e _ 6—1/5 1

u(z) = 100(z+(y-1)?)

¥

[_eve '3
which has a boundary layer for z = 1,0 < y < 1 and a steep hill around z = 0,y = 1. In order to
measure the error of the approximate solution, a discrete approximation to the L, error norm is
used. This is appropriate for this kind of problem: For solutions with discontinuities of the above
type, one can observe 1st order convergence only with respect to this norm (no convergence in the
L norm, order 0.5 in the L, norm).

The results have been obtained using the flagging criteria
h' [Bhmax{lal, b} (1D} ;ul + 1D} ,ul)] = 7

with a given value of 5. For € < g}, the second factor is an approximation to the lowest order error
term of the discretization. Based on experiments, f = 1 is a good choice. Starting with the global
grid, the composite grid is self-adaptively built on the basis of the flagging and gridding algorithm

described in Section 3.

MG-V FAC
uniform 17 = 0.02 7 =0.01 7 = 0.001
h e n e n b e n b e n b
1/32 | 0.0293 | 961 0.0293 | 961 1 {0.0293 | 961 1 |0.0293 | 961 1
1/64 || 0.0159 | 3969 |/ 0.0160 | 1806 | 4 | 0.0160 | 1967 | 4 | 0.0159 | 2757 | 3
1/128 || 0.0083 | 16129 | 0.0089 | 3430 | 10 | 0.0087 | 3971 | 10 | 0.0083 | 6212 | 7
1/256 | 0.0043 | 65025 | 0.0056 | 6378 | 19 | 0.0051 | 7943 | 16 | 0.0043 | 13473 | 12
1/512 || 0.0023 | 261121 | 0.0073 | 12306 | 34 | 0.0044 | 15909 | 30 | 0.0023 | 27410 | 22

Table 2: Accuracy (L1-norm e) vs. the number of grid points (n) and the number of blocks () for
MG-V on a uniform grid and FAC on self-adaptively refined composite grids.

In Table 2, the results for MG and FAC are presented for three values of . In Figure 3, two of
the corresponding block structured grids are displayed. The corresponding error plots give an
impression of the error distribution restricted from the composite grid to the global uniform grid.
Thus, larger errors near the boundary layer are not visible. The results allow the following

conclusions:

o In spite of the well known difficulties in error control of convection dominated problems, the
grids that are constructed self-adaptively are reasonably well suited to the numerical problem.

o As long as the accuracy of the finest level is not reached, the error norm is approximatively
proportional to 5. As usual in error control by residuals, with the norm of the inverse operator

being unknown, the constant factor is not known.

o If the refinement grid does not properly match the local activity, convergence rates significantly
degrade and the error norm may even increase.

e Additional tests have shown that, if the boundary layer is fully resolved with an increased
number of refinement levels, the discretization order, as expected, changes from one to two.

e The gridding algorithm is able to treat very complicated refinement structures efficiently: The
number of blocks that are created is nearly minimal (compared to hand coding).
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o Though this example needs relatively large refinement regions, the overall gain by using
adaptive grids is more than 3.5 (taking into account the different number of points and the
different convergence rates). For pure boundary layer problems, factors larger than 10 have
been observed.

e These results have been obtained in a serial environment. AMR++, however, has been
successfully tested in parallel. For performance and efficiency considerations, see Sect. 2 and 3.
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